R语言学习 - 箱线图(小提琴图、抖动图、区域散点图)
![](https://images2017.cnblogs.com/blog/1210702/201708/1210702-20170830181617499-774236523.png)
profile="Name;2cell_1;2cell_2;2cell_3;4cell_1;4cell_2;4cell_3;zygote_1;zygote_2;zygote_3
A;4;6;7;3.2;5.2;5.6;2;4;3
B;6;8;9;5.2;7.2;7.6;4;6;5
C;8;10;11;7.2;9.2;9.6;6;8;7
D;10;12;13;9.2;11.2;11.6;8;10;9
E;12;14;15;11.2;13.2;13.6;10;12;11
F;14;16;17;13.2;15.2;15.6;12;14;13
G;15;17;18;14.2;16.2;16.6;13;15;14
H;16;18;19;15.2;17.2;17.6;14;16;15
I;17;19;20;16.2;18.2;18.6;15;17;16
J;18;20;21;17.2;19.2;19.6;16;18;17
L;19;21;22;18.2;20.2;20.6;17;19;18
M;20;22;23;19.2;21.2;21.6;18;20;19
N;21;23;24;20.2;22.2;22.6;19;21;20
O;22;24;25;21.2;23.2;23.6;20;22;21"
profile_text <- read.table(text=profile, header=T, row.names=1, quote="",sep=";", check.names=F)
# 在melt时保留位置信息
# melt格式是ggplot2画图最喜欢的格式
# 好好体会下这个格式,虽然多占用了不少空间,但是确实很方便 library(ggplot2)
library(reshape2)
data_m <- melt(profile_text)
head(data_m)
variable value
1 2cell_1 4
2 2cell_1 6
3 2cell_1 8
4 2cell_1 10
5 2cell_1 12
6 2cell_1 14
# variable和value为矩阵melt后的两列的名字,内部变量, variable代表了点线的属性,value代表对应的值。
p <- ggplot(data_m, aes(x=variable, y=value),color=variable) +
geom_boxplot() +
theme(axis.text.x=element_text(angle=50,hjust=0.5, vjust=0.5)) +
theme(legend.position="none")
p
# 图会存储在当前目录的Rplots.pdf文件中,如果用Rstudio,可以不运行dev.off()
dev.off()
# variable和value为矩阵melt后的两列的名字,内部变量, variable代表了点线的属性,value代表对应的值。
p <- ggplot(data_m, aes(x=variable, y=value),color=variable) +
geom_boxplot(aes(fill=factor(variable))) +
theme(axis.text.x=element_text(angle=50,hjust=0.5, vjust=0.5)) +
theme(legend.position="none")
p
# 图会存储在当前目录的Rplots.pdf文件中,如果用Rstudio,可以不运行dev.off()
dev.off()
![](https://images2017.cnblogs.com/blog/1210702/201708/1210702-20170830185033343-1795249229.png)
# variable和value为矩阵melt后的两列的名字,内部变量, variable代表了点线的属性,value代表对应的值。
p <- ggplot(data_m, aes(x=variable, y=value),color=variable) +
geom_violin(aes(fill=factor(variable))) +
theme(axis.text.x=element_text(angle=50,hjust=0.5, vjust=0.5)) +
theme(legend.position="none")
p
# 图会存储在当前目录的Rplots.pdf文件中,如果用Rstudio,可以不运行dev.off()
dev.off()
![](https://images2017.cnblogs.com/blog/1210702/201708/1210702-20170830185117062-1840679666.png)
library(ggbeeswarm)
# 为了更好的效果,只保留其中一个样品的数据
# grepl类似于Linux的grep命令,获取特定模式的字符串
data_m2 <- data_m[grepl("_3", data_m$variable),] # variable和value为矩阵melt后的两列的名字,内部变量, variable代表了点线的属性,value代表对应的值。
p <- ggplot(data_m2, aes(x=variable, y=value),color=variable) +
geom_quasirandom(aes(colour=factor(variable))) +
theme_bw() + theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), legend.key=element_blank()) +
theme(legend.position="none")
# 也可以用geom_jitter(aes(colour=factor(variable)))代替geom_quasirandom(aes(colour=factor(variable)))
# 但个人认为geom_quasirandom给出的结果更有特色 ggsave(p, filename="jitterplot.pdf", width=14, height=8, units=c("cm"))
![](https://images2017.cnblogs.com/blog/1210702/201708/1210702-20170830185532405-2120525708.png)
profile="Name;2cell_1;2cell_2;2cell_3;2cell_4;2cell_5;2cell_6;4cell_1;4cell_2;4cell_3;4cell_4;4cell_5;4cell_6;zygote_1;zygote_2;zygote_3;zygote_4;zygote_5;zygote_6
A;4;6;7;5;8;6;3.2;5.2;5.6;3.6;7.6;4.8;2;4;3;2;4;2.5
B;6;8;9;7;10;8;5.2;7.2;7.6;5.6;9.6;6.8;4;6;5;4;6;4.5" profile_text <- read.table(text=profile, header=T, row.names=1, quote="",sep=";", check.names=F) data_m = data.frame(t(profile_text['A',]))
data_m$sample = rownames(data_m)
# 只挑选显示部分
# grepl前面已经讲过用于匹配
data_m[grepl('_[123]', data_m$sample),]
# 可以利用strsplit分割,取出其前面的字符串
# R中复杂的输出结果多数以列表的形式体现,在之前的矩阵操作教程中
# 提到过用str函数来查看复杂结果的结构,并从中获取信息
group = unlist(lapply(strsplit(data_m$sample,"_"), function(x) x[1]))
data_m$group = group
data_m[grepl('_[123]', data_m$sample),]
如果没有这个规律,也可以提到类似于下面的文件,指定样品所属的组的信息。
sampleGroup_text="Sample;Group
zygote_1;zygote
zygote_2;zygote
zygote_3;zygote
zygote_4;zygote
zygote_5;zygote
zygote_6;zygote
2cell_1;2cell
2cell_2;2cell
2cell_3;2cell
2cell_4;2cell
2cell_5;2cell
2cell_6;2cell
4cell_1;4cell
4cell_2;4cell
4cell_3;4cell
4cell_4;4cell
4cell_5;4cell
4cell_6;4cell" #sampleGroup = read.table(text=sampleGroup_text,sep="\t",header=1,check.names=F,row.names=1)
#data_m <- merge(data_m, sampleGroup, by="row.names")
# 会获得相同的结果,脚本注释掉了以免重复执行引起问题
矩阵准备好了,开始画图了 (小提琴图做例子,其它类似)
# 调整下样品出现的顺序
data_m$group <- factor(data_m$group, levels=c("zygote","2cell","4cell"))
# group和A为矩阵中两列的名字,group代表了值的属性,A代表基因A对应的表达值。
# 注意看修改了的地方
p <- ggplot(data_m, aes(x=group, y=A),color=group) +
geom_violin(aes(fill=factor(group))) +
theme(axis.text.x=element_text(angle=50,hjust=0.5, vjust=0.5)) +
theme(legend.position="none")
p
# 图会存储在当前目录的Rplots.pdf文件中,如果用Rstudio,可以不运行dev.off()
![](https://images2017.cnblogs.com/blog/1210702/201708/1210702-20170830190159483-1481863665.png)
long_table <- "Grp;Value
GrpA;10
GrpA;11
GrpA;12
GrpB;5
GrpB;4
GrpB;3
GrpB;2
GrpC;2
GrpC;3" long_table <- read.table(text=long_table,sep="\t",header=1,check.names=F) p <- ggplot(long_table, aes(x=Grp, y=Value),color=Grp) +
geom_violin(aes(fill=factor(Grp))) +
theme(axis.text.x=element_text(angle=50,hjust=0.5, vjust=0.5)) +
theme(legend.position="none")
p
R语言学习 - 箱线图(小提琴图、抖动图、区域散点图)的更多相关文章
- R语言学习 第四篇:函数和流程控制
变量用于临时存储数据,而函数用于操作数据,实现代码的重复使用.在R中,函数只是另一种数据类型的变量,可以被分配,操作,甚至把函数作为参数传递给其他函数.分支控制和循环控制,和通用编程语言的风格很相似, ...
- R语言学习笔记:基础知识
1.数据分析金字塔 2.[文件]-[改变工作目录] 3.[程序包]-[设定CRAN镜像] [程序包]-[安装程序包] 4.向量 c() 例:x=c(2,5,8,3,5,9) 例:x=c(1:100) ...
- R语言学习笔记:分析学生的考试成绩
孩子上初中时拿到过全年级一次考试所有科目的考试成绩表,正好可以用于R语言的统计分析学习.为了不泄漏孩子的姓名,就用学号代替了,感兴趣可以下载测试数据进行练习. num class chn math e ...
- R语言学习2:绘图
本系列是一个新的系列,在此系列中,我将和大家共同学习R语言.由于我对R语言的了解也甚少,所以本系列更多以一个学习者的视角来完成. 参考教材:<R语言实战>第二版(Robert I.Kaba ...
- R语言学习笔记(二)
今天主要学习了两个统计学的基本概念:峰度和偏度,并且用R语言来描述. > vars<-c("mpg","hp","wt") &g ...
- R语言学习笔记(数据预处理)
setwd("d:/r/r-data/")data=read.table("salary.txt",header=T)attach(data)mean(Sala ...
- R语言学习路线和常用数据挖掘包(转)
对于初学R语言的人,最常见的方式是:遇到不会的地方,就跑到论坛上吼一嗓子,然后欣然or悲伤的离去,一直到遇到下一个问题再回来.当然,这不是最好的学习方式,最好的方式是——看书.目前,市面上介绍R语言的 ...
- R语言学习笔记︱Echarts与R的可视化包——地区地图
笔者寄语:感谢CDA DSC训练营周末上完课,常老师.曾柯老师加了小课,讲了echart与R结合的函数包recharts的一些基本用法.通过对比谢益辉老师GitHub的说明文档,曾柯老师极大地简化了一 ...
- 【R语言学习】时间序列
时序分析会用到的函数 函数 程序包 用途 ts() stats 生成时序对象 plot() graphics 画出时间序列的折线图 start() stats 返回时间序列的开始时间 end() st ...
随机推荐
- org.hibernate.HibernateException: No Hibernate Session bound to thread, and configuration does not
遇到这个问题之前,我去百度和谷歌去搜索了一下.发现各种说法.可是针对我的项目而言,也就是公司的项目而言,这个问题的根源并不是是网上所说的那样. 最后是通过自己的想法做測试得到了解决. 1.首先说说我的 ...
- easyUI 动态添加窗体
有一张页面A,在页面开头引用了jquery.easyUI.min.js. 现在想达到这么一种效果,点击页面A的一个按钮,弹出一个easyUI窗体.因为想分模块的原因,这个窗体对应的是另一张页面B.在点 ...
- 2016/2/18 html 图片热点,网页划区,拼接,表单
①图片热点 规划出图片上的一个区域,可以做出超链接,直接点击图片区域就可以完成跳转的效果. 显示 ②网页划区 在一个网页里,规划出一个区域用来展示另一个网页的内容. ③网页拼接 在一个网络页面内,规划 ...
- nohup 程序在后台运营 避免 xshell 卡死 通过 nohup.out分析调取系统命令时的异常分析
nohup 程序在后台运营 避免 xshell 卡死 [root@admin1 after_fc_distributed]# nohup /root/anaconda3/bin/python da ...
- HTTPS数据包抓取的可行性分析
HTTPS数据包抓取的可行性分析 相信只要是从事软件开发, 多多少少都会涉及到数据包的抓取.常见的有网页数据抓取(即网页爬虫),应用程序数据包抓取等.网页数据抓取比较简单, 在chrome下可以非常方 ...
- AndroidCommon示例
效果图如下: 1) 自动滚动无限循环ViewPager.ViewPager嵌套自动滚动ViewPager (2) 网络缓存Demo (3) 图片缓存Demo,图片SD卡缓存D ...
- zoj 3023 Light Bulb
题目大意: 求L的最大值 思路: 可以想象出是一个关于人到灯泡距离x的单峰上凸函数 当光线在墙角左边的时候影子在不断增长 然后通过相似可以推出人在墙上影子的长度为:H+D*(h-H)/x 再加上地上的 ...
- gitlab邮箱验证 邮箱提醒设置
Gitlab邮件提醒方便跟踪项目进度,在这里介绍两种方式,一种是用系统的sendmail发送邮件,另一种是GMAIL的stmp来发送邮件 第一种 用系统的sendmail发送邮件 cd /ho ...
- Scala 归约操作- - - - -reduce
object 归约操作_reduce { def main(args: Array[String]): Unit = { val list=List(,,,,) val result=list.red ...
- 利用 BASE64Encoder 对字符串进行加密 BASE64Decoder进行解密
转自:https://blog.csdn.net/chenyongtu110/article/details/51694323