课程四(Convolutional Neural Networks),第三 周(Object detection) —— 1.Practice questions:Detection algorithms
【解释】
tree的两个bounding boxes 都要保留,因为交并比小于0.5;car 0.73保留;pedestrain 0.98保留;motorcycle 0.58保留。一共5个。
【解释】
5个anchor box, 一个anchor box 对应(1+4+20)个标签,所以output volume 是 19*19*5*25
课程四(Convolutional Neural Networks),第三 周(Object detection) —— 1.Practice questions:Detection algorithms的更多相关文章
- 课程四(Convolutional Neural Networks),第一周(Foundations of Convolutional Neural Networks) —— 3.Programming assignments:Convolutional Model: application
Convolutional Neural Networks: Application Welcome to Course 4's second assignment! In this notebook ...
- 课程四(Convolutional Neural Networks),第一周(Foundations of Convolutional Neural Networks) —— 2.Programming assignments:Convolutional Model: step by step
Convolutional Neural Networks: Step by Step Welcome to Course 4's first assignment! In this assignme ...
- 课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 0.Learning Goals
Learning Goals Understand multiple foundational papers of convolutional neural networks Analyze the ...
- 课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 2.Programming assignments : Keras Tutorial - The Happy House (not graded)
Keras tutorial - the Happy House Welcome to the first assignment of week 2. In this assignment, you ...
- 课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) ——3.Programming assignments : Residual Networks
Residual Networks Welcome to the second assignment of this week! You will learn how to build very de ...
- 课程四(Convolutional Neural Networks),第一周(Foundations of Convolutional Neural Networks) —— 0.Learning Goals
Learning Goals Understand the convolution operation Understand the pooling operation Remember the vo ...
- 课程四(Convolutional Neural Networks),第二 周(Deep convolutional models: case studies) —— 1.Practice questions
[解释] 应该是same padding 而不是 valid padding . [解释] 卷积操作用的应该是adding additional layers to the network ,而是应该 ...
- 课程四(Convolutional Neural Networks),第一周(Foundations of Convolutional Neural Networks) —— 1.Practice questions:The basics of ConvNets
[解释] 100*(300*300*3)+ 100=27000100 [解释] (5*5*3+1)*100=7600 [中文翻译] 您有一个输入是 63x63x16, 并 将他与32个滤波器卷积, 每 ...
- 课程四(Convolutional Neural Networks),第四 周(Special applications: Face recognition & Neural style transfer) —— 2.Programming assignments:Art generation with Neural Style Transfer
Deep Learning & Art: Neural Style Transfer Welcome to the second assignment of this week. In thi ...
- 课程四(Convolutional Neural Networks),第三 周(Object detection) —— 2.Programming assignments:Car detection with YOLOv2
Autonomous driving - Car detection Welcome to your week 3 programming assignment. You will learn abo ...
随机推荐
- redis 动态修改配置与备份文件目录
redis-cli -c -h 10.1.1.1 -p 7000 获取所有可以配置的KEY config get * 设置KEY config set * 配置重新写入配置文件 CONFIG REWR ...
- HDU-1160.FatMouse'sSpeed.(LIS变形 + 路径打印)
本题大意:给定一定数量的数对,每个数保存着一只老鼠的质量和速度,让你求出一个最长序列,这个序列按照质量严格递增,速度严格递减排列,让你输出这个序列的最长长度,并且输出组成这个最长长度的序列的对应的老鼠 ...
- LAB2
任务1: 效果:HelloWorld 好像完全按视频做就行了 学会了:把glassfish改好了,能跑 没学会:视频里的解说不懂在干嘛,得再看看 任务2 效果:intersetingpicture要求 ...
- react项目的ant-design-mobile的使用
现在测试一下ant-design-mobile的使用,引用一个Button 没有样式 这个问题是没有引入样式 解决方法有两种 这种方法自己弄不出来,然后用另外一种方法 引入样式: import 'an ...
- 用<pre>预格式化的文本
被包围在 <pre> 标签 元素中的文本通常会保留空格和换行符.而文本也会呈现为等宽字体. 提示: <pre> 标签的一个常见应用就是用来表示计算机的源代码.
- [leetcode]17. Letter Combinations of a Phone Number手机键盘的字母组合
Given a string containing digits from 2-9 inclusive, return all possible letter combinations that th ...
- 通过类名或者jar名查询所在jar包
一.问题 例如我想查看一下FilterSecurityInterceptor的源码,但是我不知道它在maven依赖中的哪个jar包中 二.解决方案 http://www.findmaven.net/ ...
- VC 中引用js文件
#include "comutil.h" using namespace MSScriptControl; #include <MsHTML.h> #include & ...
- 教你轻松快速学会用Calibre TXT转MOBI
教你轻松快速学会TXT转为有目录的MOBI###授人以渔,lllll5500制作### 需使用软件按先后顺序如下:一.排版助手 官网http://www.gidot.net/typesetter/二. ...
- Axure RP Extension for Chrome 插件安装
描述 我的chmod浏览器上不去谷歌商店,我用的是蓝灯,登上商店后搜索Axure RP Extension for Chrome,下载安装,完成后进入这个插件的详细信息: 使用 打开用axure生成的 ...