狄克斯特拉算法(Python实现)
概述
狄克斯特拉算法——用于在加权图中找到最短路径
ps:
- 广度优先搜索——用于解决非加权图的最短路径问题
- 存在负权边时——贝尔曼-福德算法
下面是来自维基百科的权威解释。
戴克斯特拉算法(英语:Dijkstra's algorithm,又译迪杰斯特拉算法)由荷兰计算机科学家艾兹赫尔·戴克斯特拉在1956年提出。戴克斯特拉算法使用了广度优先搜索解决赋权有向图的单源最短路径问题。该算法存在很多变体;戴克斯特拉的原始版本找到两个顶点之间的最短路径,但是更常见的变体固定了一个顶点作为源节点然后找到该顶点到图中所有其它节点的最短路径,产生一个最短路径树。该算法常用于路由算法或者作为其他图算法的一个子模块。举例来说,如果图中的顶点表示城市,而边上的权重表示城市间开车行经的距离,该算法可以用来找到两个城市之间的最短路径。
该算法的输入包含了一个有权重的有向图 G,以及G中的一个来源顶点 S。我们以 V 表示 G 中所有顶点的集合。每一个图中的边,都是两个顶点所形成的有序元素对。(u, v) 表示从顶点 u 到 v 有路径相连。我们以 E 表示G中所有边的集合,而边的权重则由权重函数 w: E → [0, ∞] 定义。因此,w(u, v) 就是从顶点 u 到顶点 v 的非负权重(weight)。边的权重可以想像成两个顶点之间的距离。任两点间路径的权重,就是该路径上所有边的权重总和。已知 V 中有顶点 s 及 t,Dijkstra 算法可以找到 s到 t 的最低权重路径(例如,最短路径)。这个算法也可以在一个图中,找到从一个顶点 s 到任何其他顶点的最短路径。
最初的戴克斯特拉算法不采用最小优先级队列,时间复杂度是{\displaystyle O(|V|^{2})}(其中{\displaystyle |V|}为图的顶点个数)。通过斐波那契堆实现的戴克斯特拉算法时间复杂度是{\displaystyle O(|E|+|V|\log |V|)} (其中{\displaystyle |E|}是边数) (Fredman & Tarjan 1984)。对于不含负权的有向图,这是当前已知的最快的单源最短路径算法。
Python实现:
# 创建图
graph = {}
graph["start"] = {}
graph["start"]["a"] = 6
graph["start"]["b"] = 2
graph["a"] = {}
graph["a"]["fin"] = 1
graph["b"] = {}
graph["b"]["a"] = 3
graph["b"]["fin"] = 5
graph["fin"] = {}
print(graph) # {'start': {'a': 6, 'b': 2}, 'a': {'fin': 1}, 'b': {'a': 3, 'fin': 5}, 'fin': {}}
# 创建开销表
infinity = float("inf")
costs = {}
costs["a"] = 6
costs["b"] = 2
costs["fin"] = infinity
print(infinity, type(infinity))
# 创建父节点
parents = {}
parents["a"] = "start"
parents["b"] = "start"
parents["fin"] = None
# 用来记录处理过的节点
processed = []
def find_lower_cost_node(costs):
lowest_cost = float("inf")
lowest_cost_node = None
for node in costs:
cost = costs[node]
if cost < lowest_cost and node not in processed:
lowest_cost = cost
lowest_cost_node = node
return lowest_cost_node
node = find_lower_cost_node(costs)
while node is not None:
cost = costs[node]
neighbors = graph[node]
for n in neighbors.keys():
new_cost = cost + neighbors[n]
if costs[n] > new_cost:
costs[n] = new_cost
parents[n] = node
processed.append(node)
node = find_lower_cost_node(costs)
print(costs)
狄克斯特拉算法(Python实现)的更多相关文章
- 关于狄克斯特拉算法(dijkstra)总结
1,2,4是四个定点其他的是距离,从2到4最直接的就是2-4,但是不是最近的,需要舒展一下2-1-4,这样只有8.所以才是最短的.这个过程就是狄克斯特拉算法.下面进入正题: 我们这里定义图的编号为 ...
- 【算法】狄克斯特拉算法(Dijkstra’s algorithm)
狄克斯特拉算法(Dijkstra’s algorithm) 找出最快的路径使用算法——狄克斯特拉算法(Dijkstra’s algorithm). 使用狄克斯特拉算法 步骤 (1) 找出最便宜的节点, ...
- 狄克斯特拉(Dijkstra)算法
引入 从A点到B点的最短路径是什么?求最短路径的两种算法:Dijkstra算法和Floyd算法. 网图:带权图. 非网图最短路径:两顶点间经过的边数最少的路径.(非网图也可被理解为各边权值为1的网图. ...
- [算法导论]迪克斯特拉算法 @ Python
class Graph: def __init__(self): self.V = [] self.w = {} class Vertex: def __init__(self, x): self.k ...
- C++迪杰斯特拉算法求最短路径
一:算法历史 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是以 ...
- 迪杰斯特拉算法(Dijkstra) (基础dij+堆优化) BY:优少
首先来一段百度百科压压惊... 迪杰斯特拉算法(Dijkstra)是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最 ...
- Java 迪杰斯特拉算法实现查找最短距离
迪杰斯特拉算法 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中最短路径问题.迪杰斯特拉算法主要特点是 ...
- 算法-迪杰斯特拉算法(dijkstra)-最短路径
迪杰斯特拉算法(dijkstra)-最短路径 简介: 迪杰斯特拉算法是由荷兰计算机科学家狄克斯特拉于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图中 ...
- Python完成迪杰斯特拉算法并生成最短路径
def Dijkstra(network,s,d):#迪杰斯特拉算法算s-d的最短路径,并返回该路径和代价 print("Start Dijstra Path……") path=[ ...
随机推荐
- Loadrunner常用目录、组成部分及负载测试流程
常用目录 bin:存放一些可执行程序 classes:可能用到的jar包 My Template:存放一些自己创建的模板 include:头文件(可以编写自定义函数,保存成.h的头文件形式并放在这个目 ...
- Allegro PCB Design GXL (legacy) 从dxf文件中导入板框
Allegro PCB Design GXL (legacy) version 16.6-2015 新建brd文件,并设置好相应的参数之后,点击菜单:File > Import > DXF ...
- 判断三次URL可用性脚本
#!/bin/bash check_url() { HTTP_CODE=$(curl -o /dev/ -s -) ];then continue fi } URL_LIST="www.ba ...
- jQuery之导航菜单(点击该父节点时子节点显示,同时子节点的同级隐藏,但是同级的父节点始终显示)
注:对于同一个对象不超过3个操作的,可直接写成一行,超 过3个操作的建议每行写一个操作.这样可读性较强,可提高代码的可读性和可维护性 核心代码: $(".has_children" ...
- Java+selenium之WebDriver对浏览器的简单操作(一)
操作浏览器的主要方法都来自 org.openqa.selenium.WebDriver 这个接口 这些方法都是在 org.openqa.selenium.remote.RemoteWebDriver这 ...
- 【C++ Primer | 03】字符串、向量和数组
博客链接: c++ 中 const_iterator 和 const vector<>::iterator的区别 const vector <int> ::iterator和v ...
- Nignx添加proxy_pass可能造成DNS解析超时的问题解决
resolver 219.149.194.55; location ^~ /bigdata { proxy_set_header Host $host; ...
- EF Core MYSQL 生成表映射配置问题
Model表 public class Goods { public string ID { get; set; } public string CreatedBy { get; set; } pub ...
- VS2017+mysql5.7 连接数据库生成实体
参考:https://www.cnblogs.com/RushPasser/p/5438334.html 下载:https://share.weiyun.com/5rM4FrG mysql-for-v ...
- WPF 下两种图片合成或加水印的方式(转载)
来源:http://www.cnblogs.com/lxblog/ 最近项目中应用多次应用了图片合成,为了今后方便特此记下. 在WPF下有两种图片合成的方式,一种还是用原来C#提供的GDI+方式,命名 ...