字符串相似度算法-LEVENSHTEIN DISTANCE算法
Levenshtein Distance 算法,又叫 Edit Distance 算法,是指两个字符串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。一般来说,编辑距离越小,两个串的相似度越大。
算法实现原理图解:
a.首先是有两个字符串,这里写一个简单的 abc 和 abe
b.将字符串想象成下面的结构。
A 处 是一个标记,为了方便讲解,不是这个表的内容。
abc | a | b | c | |
abe | 0 | 1 | 2 | 3 |
a | 1 | A处 | ||
b | 2 | |||
e | 3 |
c.来计算 A 处 出得值
它的值取决于:左边的 1、上边的 1、左上角的 0。
按照 Levenshtein distance 的意思:
上面的值加 1 ,得到 1+1=2 ,
左面的值加 1 ,得到 1+1=2 ,
左上角的值根据字符是否相同,相同加 0 ,不同加 1 。A 处由于是两个 a 相同,左上角的值加 0 ,得到 0+0=0 。
然后从我们上面计算出来的 2,2,0 三个值中选取最小值,所以 A 处的值为 0 。
d.于是表成为下面的样子
abc | a | b | c | |
abe | 0 | 1 | 2 | 3 |
a | 1 | 0 | ||
b | 2 | B处 | ||
e | 3 |
在 B 处 会同样得到三个值,左边计算后为 3 ,上边计算后为 1 ,在 B 处 由于对应的字符为 a、b ,不相等,所以左上角应该在当前值的基础上加 1 ,这样得到 1+1=2 ,在(3,1,2)中选出最小的为 B 处的值。
e.于是表就更新了
abc | a | b | c | |
abe | 0 | 1 | 2 | 3 |
a | 1 | 0 | ||
b | 2 | 1 | ||
e | 3 | C处 |
C 处 计算后:上面的值为 2 ,左边的值为 4 ,左上角的:a 和 e 不相同,所以加 1 ,即 2+1 ,左上角的为 3 。
在(2,4,3)中取最小的为 C 处的值。
f.于是依次推得到
a | b | c | ||
0 | 1 | 2 | 3 | |
a | 1 | A处 0 | D处 1 | G处 2 |
b | 2 | B处 1 | E处 0 | H处 1 |
e | 3 | C处 2 | F处 1 | I处 1 |
I 处: 表示 abc 和 abe 有1个需要编辑的操作( c 替换成 e )。这个是需要计算出来的。
同时,也获得一些额外的信息:
A处: 表示a 和a 需要有0个操作。字符串一样
B处: 表示ab 和a 需要有1个操作。
C处: 表示abe 和a 需要有2个操作。
D处: 表示a 和ab 需要有1个操作。
E处: 表示ab 和ab 需要有0个操作。字符串一样
F处: 表示abe 和ab 需要有1个操作。
G处: 表示a 和abc 需要有2个操作。
H处: 表示ab 和abc 需要有1个操作。
I处: 表示abe 和abc 需要有1个操作。
g.计算相似度
先取两个字符串长度的最大值 maxLen,用 1-(需要操作数 除 maxLen),得到相似度。
例如 abc 和 abe 一个操作,长度为 3 ,所以相似度为 1-1/3=0.666 。
最近需要对文本内容进行对比计算相似度,找了很久还真的让我找到个现成的模块 python-Levenshtein ,这个模块用法直接用help看吧,我主要用到里面的distance和ratio,其它的暂时还不知道有什么功能。
字符串相似度算法-LEVENSHTEIN DISTANCE算法的更多相关文章
- 字符串相似度算法——Levenshtein Distance算法
Levenshtein Distance 算法,又叫 Edit Distance 算法,是指两个字符串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一 ...
- Levenshtein Distance算法(编辑距离算法)
编辑距离 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符, ...
- Magic Number(Levenshtein distance算法)
Magic Number Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit ...
- 字符串相似度算法(编辑距离算法 Levenshtein Distance)(转)
在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个 ...
- 字符串相似度算法(编辑距离算法 Levenshtein Distance)
在搞验证码识别的时候需要比较字符代码的相似度用到“编辑距离算法”,关于原理和C#实现做个记录.据百度百科介绍:编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串 ...
- 用C#实现字符串相似度算法(编辑距离算法 Levenshtein Distance)
在搞验证码识别的时候需要比较字符代码的相似度用到"编辑距离算法",关于原理和C#实现做个记录. 据百度百科介绍: 编辑距离,又称Levenshtein距离(也叫做Edit Dist ...
- [转]字符串相似度算法(编辑距离算法 Levenshtein Distance)
转自:http://www.sigvc.org/bbs/forum.php?mod=viewthread&tid=981 http://www.cnblogs.com/ivanyb/archi ...
- 编辑距离算法详解:Levenshtein Distance算法
算法基本原理:假设我们可以使用d[ i , j ]个步骤(可以使用一个二维数组保存这个值),表示将串s[ 1…i ] 转换为 串t [ 1…j ]所需要的最少步骤个数,那么,在最基本的情况下,即在i等 ...
- 扒一扒编辑距离(Levenshtein Distance)算法
最近由于工作需要,接触了编辑距离(Levenshtein Distance)算法.赶脚很有意思.最初百度了一些文章,但讲的都不是很好,读起来感觉似懂非懂.最后还是用google找到了一些资料才慢慢理解 ...
随机推荐
- Mac 常用软件下载及使用教程地址推荐
知您网: http://www.zhinin.com Xclient:http://xclient.info/?t=40707b872b81127fdfd1dc4700d1a155c12f35bd 音 ...
- C# 动态生成类 枚举等
private void GenerateCode() { /*注意,先导入下面的命名空间 using System.CodeDom using System.CodeDom.Compiler; us ...
- php 判断客户端是否为手机端访问
function is_mobile_request() { $_SERVER['ALL_HTTP'] = isset($_SERVER['ALL_HTTP'])?$_SERVER['ALL_HTTP ...
- Java NIO中的缓冲区Buffer(二)创建/复制缓冲区
创建缓冲区的方式 主要有以下两种方式创建缓冲区: 1.调用allocate方法 2.调用wrap方法 我们将以charBuffer为例,阐述各个方法的含义: allocate方法创建缓冲区 调用all ...
- div盒子水平垂直居中方法
文章转载自:div盒子水平垂直居中的方法 - 雪明瑶 这个问题比较老,方法比较多,各有优劣,着情使用. 一.盒子没有固定的宽和高 方案1.Transforms 变形 这是最简单的方法,不仅能实现绝对居 ...
- Feign快速入门
一.Feign简介1.Feign是一个声明式的web服务客户端,使用Feign编写web服务客户端更加容易2.具有可插拔注解支持,包括Feign注解和JAX-RS注解,还支持可插拔的编码器与解码器3. ...
- Kafka文件存储机制那些事
Kafka是什么 Kafka是最初由Linkedin公司开发,是一个分布式.分区的.多副本的.多订阅者,基于zookeeper协调的分布式日志系统(也可以当做MQ系统),常见可以用于web/nginx ...
- 西门子PLC-1200 SCL语言开发学习笔记 (一)
一.简介和背景 PLC一般使用梯形图开发,但是梯形图适合电工使用而不是程序员使用,对我们来说开发困难,门槛高,幸好PLC的开发标准还带了类pascal的高级语言,在西门子这里叫SCL语言,这对于我们程 ...
- spring-boot-2.0.3启动源码篇 - 阶段总结
前言 开心一刻 朋友喜欢去按摩,第一次推门进来的是一个学生美眉,感觉还不错:后来经常去,有时是护士,有时是空姐,有时候是教师.昨天晚上推门进去的是一个女警察,长得贼好看,身材也很好,朋友嗷的一声就扑上 ...
- PHP 网页数据api采集
一个简单的数据采集,这里用的方法是API数据采集 //api地址,读取文本 $result = file_get_contents("https://feed.mix.sina.com.cn ...