一、介绍

RankLib.jar 是一个学习排名(Learning to rank)算法的库,目前已经实现了如下几种算法:

  • MART
  • RankNet
  • RankBoost
  • AdaRank
  • Coordinate Ascent
  • LambdaMART
  • ListNet
  • Random Forests
  • Linear regression

二、jar 包

Usage: java -jar RankLib.jar <Params>
Params:
[+] Training (+ tuning and evaluation)
# 训练数据
-train <file> Training data
# 指定排名算法
-ranker <type> Specify which ranking algorithm to use
0: MART (gradient boosted regression tree)
1: RankNet
2: RankBoost
3: AdaRank
4: Coordinate Ascent
6: LambdaMART
7: ListNet
8: Random Forests
9: Linear regression (L2 regularization)
# 特征描述文件,列出要学习的特征,每行一个特征,默认使用所有特征
[ -feature <file> ] Feature description file: list features to be considered by the learner, each on a separate line
If not specified, all features will be used.
#
[ -metric2t <metric> ] Metric to optimize on the training data. Supported: MAP, NDCG@k, DCG@k, P@k, RR@k, ERR@k (default=ERR@10)
[ -gmax <label> ] Highest judged relevance label. It affects the calculation of ERR (default=4, i.e. 5-point scale {0,1,2,3,4}) [ -silent ] Do not print progress messages (which are printed by default)
# 是否在验证数据集上调整模型
[ -validate <file> ] Specify if you want to tune your system on the validation data (default=unspecified)
If specified, the final model will be the one that performs best on the validation data
# 训练-验证数据集的分割比例
[ -tvs <x \in [0..1]> ] If you don't have separate validation data, use this to set train-validation split to be (x)(1.0-x)
# 学习模型保存到指定文件
[ -save <model> ] Save the model learned (default=not-save)
# 是否要在数据上测试训练的模型
[ -test <file> ] Specify if you want to evaluate the trained model on this data (default=unspecified)
# 训练-测试数据集的分割比例
[ -tts <x \in [0..1]> ] Set train-test split to be (x)(1.0-x). -tts will override -tvs
# 默认与 metric2t 一致
[ -metric2T <metric> ] Metric to evaluate on the test data (default to the same as specified for -metric2t)
# 归一化特征向量,方法包括求和归一化,均值/标准差归一化,最大值/最小值归一化
[ -norm <method>] Normalize all feature vectors (default=no-normalization). Method can be:
sum: normalize each feature by the sum of all its values
zscore: normalize each feature by its mean/standard deviation
linear: normalize each feature by its min/max values
# 在训练数据集上执行交叉验证
[ -kcv <k> ] Specify if you want to perform k-fold cross validation using the specified training data (default=NoCV)
-tvs can be used to further reserve a portion of the training data in each fold for validation
# 交叉验证训练库模型的目录
[ -kcvmd <dir> ] Directory for models trained via cross-validation (default=not-save) [ -kcvmn <model> ] Name for model learned in each fold. It will be prefix-ed with the fold-number (default=empty) [-] RankNet-specific parameters # 特定参数
# 训练迭代次数
[ -epoch <T> ] The number of epochs to train (default=100)
# 隐含层个数
[ -layer <layer> ] The number of hidden layers (default=1)
# 每层隐含节点个数
[ -node <node> ] The number of hidden nodes per layer (default=10)
# 学习率
[ -lr <rate> ] Learning rate (default=0.00005) [-] RankBoost-specific parameters # 特定参数
# 训练迭代次数
[ -round <T> ] The number of rounds to train (default=300)
# 搜索的阈值候选个数
[ -tc <k> ] Number of threshold candidates to search. -1 to use all feature values (default=10) [-] AdaRank-specific parameters # 特定参数
# 训练迭代次数
[ -round <T> ] The number of rounds to train (default=500)
#
[ -noeq ] Train without enqueuing too-strong features (default=unspecified)
# 连续两轮学习之间的误差
[ -tolerance <t> ] Tolerance between two consecutive rounds of learning (default=0.002)
# 一个特征可以被连续选择而不改变性能的最大次数
[ -max <times> ] The maximum number of times can a feature be consecutively selected without changing performance (default=5) [-] Coordinate Ascent-specific parameters # 特定参数
[ -r <k> ] The number of random restarts (default=5)
[ -i <iteration> ] The number of iterations to search in each dimension (default=25)
[ -tolerance <t> ] Performance tolerance between two solutions (default=0.001)
[ -reg <slack> ] Regularization parameter (default=no-regularization) [-] {MART, LambdaMART}-specific parameters # 特定参数
# 树的个数
[ -tree <t> ] Number of trees (default=1000)
# 一个叶子的样本个数
[ -leaf <l> ] Number of leaves for each tree (default=10)
# 学习率
[ -shrinkage <factor> ] Shrinkage, or learning rate (default=0.1)
# 树分割时的候选特征个数
[ -tc <k> ] Number of threshold candidates for tree spliting. -1 to use all feature values (default=256)
# 一个叶子最少的样本个数
[ -mls <n> ] Min leaf support -- minimum #samples each leaf has to contain (default=1)
[ -estop <e> ] Stop early when no improvement is observed on validaton data in e consecutive rounds (default=100) [-] ListNet-specific parameters
[ -epoch <T> ] The number of epochs to train (default=1500)
[ -lr <rate> ] Learning rate (default=0.00001) [-] Random Forests-specific parameters # 随机森林特定参数
[ -bag <r> ] Number of bags (default=300)
# 子集采样率
[ -srate <r> ] Sub-sampling rate (default=1.0)
# 特征采样率
[ -frate <r> ] Feature sampling rate (default=0.3)
[ -rtype <type> ] Ranker to bag (default=0, i.e. MART)
# 树个数
[ -tree <t> ] Number of trees in each bag (default=1)
# 每棵树的叶节点个数
[ -leaf <l> ] Number of leaves for each tree (default=100)
# 学习率
[ -shrinkage <factor> ] Shrinkage, or learning rate (default=0.1)
# 树分割时使用的候选特征阈值个数
[ -tc <k> ] Number of threshold candidates for tree spliting. -1 to use all feature values (default=256)
[ -mls <n> ] Min leaf support -- minimum #samples each leaf has to contain (default=1) [-] Linear Regression-specific parameters
[ -L2 <reg> ] L2 regularization parameter (default=1.0E-10) [+] Testing previously saved models # 测试已保存的模型
# 加载模型
-load <model> The model to load
Multiple -load can be used to specify models from multiple folds (in increasing order),
in which case the test/rank data will be partitioned accordingly.
# 测试数据
-test <file> Test data to evaluate the model(s) (specify either this or -rank but not both)
# 对指定文件中的样本排序,与 -test 不能同时使用
-rank <file> Rank the samples in the specified file (specify either this or -test but not both)
[ -metric2T <metric> ] Metric to evaluate on the test data (default=ERR@10)
[ -gmax <label> ] Highest judged relevance label. It affects the calculation of ERR (default=4, i.e. 5-point scale {0,1,2,3,4})
[ -score <file>] Store ranker's score for each object being ranked (has to be used with -rank)
# 打印单个排名列表上的性能(必须与 -test 一起使用)
[ -idv <file> ] Save model performance (in test metric) on individual ranked lists (has to be used with -test)
# 特征归一化
[ -norm ] Normalize feature vectors (similar to -norm for training/tuning)

1. -train <file>

指定训练数据的文件,训练数据格式:

label    qid:$id    $featureid:$featurevalue    $featureid:$featurevalue ... # description

每行代表一个样本,相同查询请求的样本的 qid 相同,label 表示该样本和该查询请求的相关程度,description 描述信息,不参与训练计算。

2、-ranker <type>

指定排名算法

  • MART(Multiple Additive Regression Tree)多重增量回归树
  • GBDT(Gradient Boosting Decision Tree)梯度渐进决策树
  • GBRT(Gradient Boosting Regression Tree)梯度渐进回归树
  • TreeNet 决策树网络
  • RankNet
  • RankBoost
  • AdaRank
  • Coordinate Ascent
  • LambdaMART
  • ListNet
  • Random Forests
  • Linear regression

3、-feature <file>

指定样本的特征定义文件,格式如下:

feature1
feature2
...
# featureK(该特征不参与分析)

4、-metric2t <metric>

指定信息检索中的评价指标,包括:

MAP, NDCG@k, DCG@k, P@k, RR@k, ERR@k

5、Example

java -jar bin/RankLib.jar -train MQ2008/Fold1/train.txt -test MQ2008/Fold1/test.txt -validate MQ2008/Fold1/vali.txt -ranker 6 -metric2t NDCG@10 -metric2T ERR@10 -save mymodel.txt

命令解释 >>>

训练数据:MQ2008/Fold1/train.txt

测试数据:MQ2008/Fold1/test.txt

验证数据:MQ2008/Fold1/vali.txt

排名算法:6,LambdaMART

评估指标:NDCG,取排名前 10 个数据进行计算

测试数据评估指标:ERR,取排名前 10 个数据进行计算

保存模型:mymodel.txt

  • 参数 -validate 是可选的,但可以更好的模型结果,对于 RankNet/MART/LambdaMART 非常重要。
  • -metric2t 仅应用于 list-wise 算法(AdaRank、Coordinate Ascent 和 LambdaMART);point-wise 和 Pair-wise 算法(MART、RankNet、RankBoost)是使用自己内部的 RMSE/pair-wise loss 作为评价指标。ListNet 虽然是 list-wise 算法,但是也不用 metric2t 指定评价指标。

6、k-fold cross validation

  • 顺序分区
java -jar bin/RankLib.jar -train MQ2008/Fold1/train.txt -ranker 4 -kcv 5 -kcvmd models/ -kcvmn ca -metric2t NDCG@10 -metric2T ERR@10

按顺序将训练数据拆分5等份,第 i 份数据作为第 i 折叠的测试数据,第 i 折叠的训练数据则是由其他折叠的数据组成。

  • 随机分区
java -cp bin/RankLib.jar ciir.umass.edu.features.FeatureManager -input MQ2008/Fold1/train.txt -output mydata/ -shuffle

将训练数据 train.txt 重新洗牌存储在 mydata/ 目录下 train.txt.shuffled

  • 获取每个折叠中的数据
java -cp bin/RankLib.jar ciir.umass.edu.features.FeatureManager -input MQ2008/Fold1/train.txt.shuffled -output mydata/ -k 5

7、评估已训练的模型

java -jar bin/RankLib.jar -load mymodel.txt -test MQ2008/Fold1/test.txt -metric2T ERR@10

8、模型对比

java -jar bin/RankLib.jar -test MQ2008/Fold1/test.txt -metric2T NDCG@10 -idv output/baseline.ndcg.txt
java -jar bin/RankLib.jar -load ca.model.txt -test MQ2008/Fold1/test.txt -metric2T NDCG@10 -idv output/ca.ndcg.txt
java -jar bin/RankLib.jar -load lm.model.txt -test MQ2008/Fold1/test.txt -metric2T NDCG@10 -idv output/lm.ndcg.txt

输出文件中包含了每条查询的 NDCG@10 指标值,以及所有查询的综合指标,例如:

NDCG@10   170   0.0
NDCG@10 176 0.6722390270733757
NDCG@10 177 0.4772656487866462
NDCG@10 178 0.539003131276382
NDCG@10 185 0.6131471927654585
NDCG@10 189 1.0
NDCG@10 191 0.6309297535714574
NDCG@10 192 1.0
NDCG@10 194 0.2532778777010656
NDCG@10 197 1.0
NDCG@10 200 0.6131471927654585
NDCG@10 204 0.4772656487866462
NDCG@10 207 0.0
NDCG@10 209 0.123151194370365
NDCG@10 221 0.39038004999210174
NDCG@10 all 0.5193204478059303

然后再进行对比:

java -cp RankLib.jar ciir.umass.edu.eval.Analyzer -all output/ -base baseline.ndcg.txt > analysis.txt

对比结果 analysis.txt 如下:

Overall comparison
------------------------------------------------------------------------
System Performance Improvement Win Loss p-value
baseline_ndcg.txt [baseline] 0.093
LM_ndcg.txt 0.2863 +0.1933 (+207.8%) 9 1 0.03
CA_ndcg.txt 0.5193 +0.4263 (+458.26%) 12 0 0.0 Detailed break down
------------------------------------------------------------------------
[ < -100%) [-100%,-75%) [-75%,-50%) [-50%,-25%) [-25%,0%) (0%,+25%] (+25%,+50%] (+50%,+75%] (+75%,+100%] ( > +100%]
LM_ndcg.txt 0 0 1 0 0 4 2 2 1 0
CA_ndcg.txt 0 0 0 0 0 1 6 2 3 0

9、利用训练模型重排名

java -jar RankLib.jar -load mymodel.txt -rank myResultLists.txt -score myScoreFile.txt

myScoreFile.txt 文件中只是增加了一列,表示重新计算的排名评分,需要自己另外根据该评分排序获取新的排名顺序。

1   0   -7.528650760650635
1 1 2.9022061824798584
1 2 -0.700125515460968
1 3 2.376657485961914
1 4 -0.29666265845298767
1 5 -2.038628101348877
1 6 -5.267711162567139
1 7 -2.022146463394165
1 8 0.6741248369216919
...

参考

RankLib wiki

[LTR] RankLib.jar 包介绍的更多相关文章

  1. Spring4相关jar包介绍(转)

    Spring4相关jar包介绍 spring-core.jar(必须):这个jar 文件包含Spring 框架基本的核心工具类.Spring 其它组件要都要使用到这个包里的类,是其它组件的基本核心,当 ...

  2. java开发常用jar包介绍(转载)

    jta.jar 标准JTA API必要 commons-collections.jar 集合类 必要 antlr.jar  ANother Tool for Language Recognition ...

  3. JAR包介绍大全用途作用详解JAVA

    jta.jar 标准JTA API必要commons-collections.jar 集合类 必要antlr.jar  ANother Tool for Language Recognition 必要 ...

  4. Springmvc jar包介绍

    spring.jar是包含有完整发布的单个jar 包,spring.jar中包含除了spring-mock.jar里所包含的内容外其它所有jar包的内容,因为只有在开发环境下才会用到 spring-m ...

  5. hibernate jar包介绍

    Hibernate3.jar            这个是hibernate最主要的jar包 ant-1.63.jar      Ant 的核心包,在构建Hibernate 时会用到 antlr-2. ...

  6. jar包介绍

    1.基本jar包 4+1:4个核心(beans+core+context+expression)+一个依赖(commons-logging...)

  7. idea中的java web项目(添加jar包介绍)和java maven web项目目录结构

    java web项目 web项目下web根目录名称是可以更改的 idea中新建java web项目,默认src为Sources Root,当然也可以手动改,在Sources Root下右键只能新建Pa ...

  8. 吴裕雄--天生自然JAVA SPRING框架开发学习笔记:Spring目录结构和基础JAR包介绍

    可以通过网址 http://repo.spring.io/simple/libs-release-local/org/springframework/spring/ 下载名称为 springframe ...

  9. Hibernate框架 jar包介绍

    一直使用my eclipse集成的Hibernate来学习.最近在写hibernate的日记,写到搭建hibernate框架的时候才发现自己对hibernate的内容还是不了解,决定自己手动搭建一下. ...

随机推荐

  1. Window安装Erlang环境

    最近学习RabbitMQ,下载rabbitmq-server后,安装提示,需要erlang环境,接着又下载erlang安装包. 仅在这里提供下安装文件和环境配置方法. 1.rabiitmq-serve ...

  2. 关于如何使`(a === 1 && a === 2 && a === 3)`返回`true`问题的思考

    看见这个面试题目,第一反应就是在变量a取值时进行了一些改变,那就要用getter,关于存取器的介绍可以看这里 var temp = 1; Object.defineProperty(window, ' ...

  3. 构建NTP时间服务器

    NTP服务器是用于局域网服务器时间同步使用的,可以保证局域网所有的服务器与时间服务器的时间保持一致,某些应用对时间实时性要求高的必须统一时间. 互联网的时间服务器也有很多,例如ntpdate ntp. ...

  4. 浏览器上安装vue devtools

    安装前要检查一下node版本的(node -v),必须将版本提高到>4.4.7.低版本的node在安装devtools时执行npm install 时报错.如何升级node版本,若在window ...

  5. 根据iPhone6设计稿动态计算rem值

    rem 单位在做移动端的h5开发的时候是最经常使用的单位.为解决自适应的问题,我们需要动态的给文档的更节点添加font-size 值.使用mediaquery 可以解决这个问题,但是每一个文件都引用一 ...

  6. 初入SpringBoot——使用IDEA构建最小SpringBootDemo

    前言 从SpringBoot一出现,就开始关注这个东西了. 但是一直不敢使用,因为一个原则是刚出来的东西肯定有很多坑.而且之后会不会流行也需要时间的检验. 现在渐渐的时间检验之后,SpringBoot ...

  7. 基于redis的分布式ID生成器

    基于redis的分布式ID生成器  

  8. 【API知识】ElementUI一些问题的解决方案

    前言 本人并不是前端开发人员,不过前端的界面和交互也没少写.以下整理一下我在使用elementUI过程中遇到的问题和对应的解决方案. 正文 1.表格字段过长省略 elmentUI的table-colu ...

  9. centos6.10搭建ELK之elasticsearch6.5.4

    1.环境准备 1.1.安装java环境版本不要低于java8 # java -version java version "1.8.0_191" Java(TM) SE Runtim ...

  10. 【翻译】WPF4.5新特性(MSDN的翻译读不太懂)

    我很在意WPF的发展,有人说微软不再维护WPF了,无所谓,随他去. MSDN上有简体版:http://msdn.microsoft.com/zh-cn/library/vstudio/bb613588 ...