np.meshgrid()用法+ np.stack()用法
A,B,C,D,E,F是6个网格点,坐标如图,如何用矩阵形式(坐标矩阵)来批量描述这些点的坐标呢?
答案如下
这就是坐标矩阵——横坐标矩阵X XX中的每个元素,与纵坐标矩阵Y YY中对应位置元素,共同构成一个点的完整坐标。如B点坐标(X12,Y12)=(1,1)
语法:X,Y = numpy.meshgrid(x, y)
输入的x,y,就是网格点的横纵坐标列向量(非矩阵)
输出的X,Y,就是坐标矩阵。
stack()函数
函数原型为:stack(arrays, axis=0),arrays可以传数组和列表。axis的含义我下面会讲解,我们先来看个例子,然后我会分析输出结果。
import numpy as np
a=[[1,2,3],
[4,5,6]]
print("列表a如下:")
print(a) print("增加一维,新维度的下标为0")
c=np.stack(a,axis=0)
print(c) print("增加一维,新维度的下标为1")
c=np.stack(a,axis=1)
print(c) 输出:
列表a如下:
[[1, 2, 3], [4, 5, 6]]
增加一维,新维度下标为0
[[1 2 3]
[4 5 6]]
增加一维,新维度下标为1
[[1 4]
[2 5]
[3 6]]
例如上面的代码中a列表中的第一个元素为[1,2,3],那么当axis=0的时候,就是在它的中括号外面再加一个中括号,变成[ [1,2,3] ](其实1,2,3之间是没有逗号的,因为stack()函数会先把参数arrays中的每个元素变成numpy的数组,数组之间是没有逗号的,看看上面的代码输出就知道了,这里大家明白就行,我为了方便讲解,下面还会加上逗号),这样最外面那层中括号才代表维度下标为0的那维;当axis=1的时候,就是在里面加个中括号,变成了[ [1],[2],[3] ],这样里面加的那层中括号才代表维度下标为1的那维。同理当axis=0的时候[4,5,6]变成[ [ 4,5,6] ],当axis=1的时候,变成[ [4],[5],[6] ]。下面我们讲如何把增加一维度后的每个元素串起来。
怎么把上面那两个元素增加维度后的结果串起来呢,其实很简单。现在我们已经知道了增加维度无非是增加中括号的意思,至于在哪里加中括号,取决于axis等于几。我们把增加的中括号想像成一个个的箱子。还拿上面的代码来说,当axis=0的时候,我们把套在[1,2,3]外面的中括号(就是[ [1,2,3] ]最外层的那个中括号)看做是箱子A,这个箱子A也会套在[4,5,6]的外面,所以我们就先把[1,2,3]和[4,5,6]放在一起,变成[1,2,3],[4,5,6],然后再一起套上箱子A,变成[ [1,2,3],[4,5,6] ]这就是当axis=0的时候程序的输出结果。
现在再来看当axis=1的时候,对于[1,2,3],我们把套在1外面的箱子(就是上面讲的[ [1],[2],[3] ]中1外面的那层中括号)看做A,套在2外面的看做B,套在3外面的看做C,同理,箱子A也会套在4的外面,箱子B也会套在5的外面,箱子C也会套在6的外面。那么我们就把1和4放一起,2和5放一起,3和6放一起,变成[ 1,4 ,2,5 ,3,6 ]然后把箱子A,B,C分别套在1,4 , 2,5 , 3,6的外面,变成[ [1,4] , [2,5] , [3,6] ]这就是程序中axis=1的时候程序的输出结果。
大家发现了没有,串起来的时候其实就是把arrays中每个元素在相同的位置套箱子的一些小块(这里叫小块这个名词可能不洽当,但是大家明白就行)放在一起后,再套箱子,就是外面套个中括号,这就是堆叠。
import numpy as np
a=[[1,2,3],
[4,5,6]]
b=[[1,2,3],
[4,5,6]]
c=[[1,2,3],
[4,5,6]]
print("a=",a)
print("b=",b)
print("c=",c) print("增加一维,新维度的下标为0")
d=np.stack((a,b,c),axis=0)
print(d) print("增加一维,新维度的下标为1")
d=np.stack((a,b,c),axis=1)
print(d)
print("增加一维,新维度的下标为2")
d=np.stack((a,b,c),axis=2)
print(d) 输出:
('a=', [[1, 2, 3], [4, 5, 6]])
('b=', [[1, 2, 3], [4, 5, 6]])
('c=', [[1, 2, 3], [4, 5, 6]])
增加一维,新维度的下标为0
[[[1 2 3]
[4 5 6]] [[1 2 3]
[4 5 6]] [[1 2 3]
[4 5 6]]]
增加一维,新维度的下标为1
[[[1 2 3]
[1 2 3]
[1 2 3]] [[4 5 6]
[4 5 6]
[4 5 6]]]
增加一维,新维度的下标为2
[[[1 1 1]
[2 2 2]
[3 3 3]] [[4 4 4]
[5 5 5]
[6 6 6]]]
---------------------
作者:neu_张康
来源:CSDN
原文:https://blog.csdn.net/csdn15698845876/article/details/73380803
版权声明:本文为博主原创文章,转载请附上博文链接!
当axis=0的时候,列表a,b,c最外面都需要套箱子(就是加中括号),那么我把你们先放一起,变成下面这样
[[1,2,3],[4,5,6]],
[[1,2,3],[4,5,6]],
[[1,2,3],[4,5,6]]
然后在最外面套箱子,变成
[
[[1,2,3],[4,5,6]],
[[1,2,3],[4,5,6]],
[[1,2,3],[4,5,6]]
]
当axis=1的时候,列表a,b,c中的[1,2,3]需要套同样的箱子,列表a,b,c中的[4,5,6]需要套同样的箱子,好,我先把你们放一块变成下面这样
[
[1,2,3],[1,2,3],[1,2,3]
,
[4,5,6],[4,5,6],[4,5,6] ]
然后开始分别在 [1,2,3],[1,2,3],[1,2,3]的外面和[4,5,6],[4,5,6],[4,5,6]的外面套箱子,变成下面这样
[
[[1,2,3],[1,2,3],[1,2,3]]
,
[[4,5,6],[4,5,6],[4,5,6]] ]
当axis=2的时候,列表a,b,c中的1,2,3,4,5,6都需要套箱子,我把你们先放一起变成:
[
[1,1,1 , 2,2,2 , 3,3,3],
[4,4,4 , 5,5,5 , 6,6,6]
]
然后在1,1,1 ………6,6,6的外面分别套箱子变成:
[
[[1,1,1] , [2,2,2] , [3,3,3]],
[[4,4,4] , [5,5,5] , [6,6,6]]
]
重点:
np.meshgrid生成的坐标矩阵可以用np.stack指定axi还原各个点坐标
举例:
generate anchors 中频繁使用np.meshgrid,最后用np.stack将shift_x,shift_y stack ,返回每一个anchor的值
原文:https://blog.csdn.net/csdn15698845876/article/details/73380803
版权声明:本文为博主原创文章,转载请附上博文链接!
来源:https://blog.csdn.net/lllxxq141592654/article/details/81532855
np.meshgrid()用法+ np.stack()用法的更多相关文章
- Meshgrid函数的基本用法(转载)
在Numpy的官方文章里,meshgrid函数的英文描述也显得文绉绉的,理解起来有些难度. 可以这么理解,meshgrid函数用两个坐标轴上的点在平面上画网格. 用法: [X,Y]=meshgrid( ...
- 深度学习实践-物体检测-faster-RCNN(原理和部分代码说明) 1.tf.image.resize_and_crop(根据比例取出特征层,进行维度变化) 2.tf.slice(数据切片) 3.x.argsort()(对数据进行排列,返回索引值) 4.np.empty(生成空矩阵) 5.np.meshgrid(生成二维数据) 6.np.where(符合条件的索引) 7.tf.gather取值
1. tf.image.resize_and_crop(net, bbox, 256, [14, 14], name) # 根据bbox的y1,x1,y2,x2获得net中的位置,将其转换为14*1 ...
- 深度学习原理与框架-神经网络-线性回归与神经网络的效果对比 1.np.c_[将数据进行合并] 2.np.linspace(将数据拆成n等分) 3.np.meshgrid(将一维数据表示为二维的维度) 4.plt.contourf(画出等高线图,画算法边界)
1. np.c[a, b] 将列表或者数据进行合并,我们也可以使用np.concatenate 参数说明:a和b表示输入的列表数据 2.np.linspace(0, 1, N) # 将0和1之间的数 ...
- python多项式拟合:np.polyfit 和 np.polyld
python数据拟合主要可采用numpy库,库的安装可直接用pip install numpy等. 1. 原始数据:假如要拟合的数据yyy来自sin函数,np.sin import numpy as ...
- np.c_与np.r_
import sys reload(sys) sys.setdefaultencoding('utf-8') import numpy as np def test(): ''' numpy函数np. ...
- numpy中np.c_和np.r_
np.r_:按列连接两个矩阵,就是把两矩阵上下相加,要求列数相等,类似于pandas中的concat() np.c_:按行连接两个矩阵,就是把两矩阵左右相加,要求行数相等,类似于pandas中的mer ...
- heckboxlist详细用法、checkboxlist用法、checkboxlist
heckboxlist详细用法.checkboxlist用法.checkboxlist for (int i = 0; i < CheckBoxList1.Items.Count; i++) { ...
- p,np,npc,np难问题,确定图灵机与非确定图灵机
本文转自豆瓣_燃烧的影子 图灵机与可计算性 图灵(1912~1954)出生于英国伦敦,19岁进入剑桥皇家学院研究量子力学和数理逻辑.1935年,图灵写出了"论高斯误差函数"的论文, ...
- np.tile 和np.newaxis
output array([[ 0.24747071, -0.43886742], [-0.03916734, -0.70580089], [ 0.00462337, -0.5143158 ...
随机推荐
- macOS Sierra(10.12.6), odoo(11.0), Python(3.5.4)配置
欣闻odoo11支持python3环境了,赶紧在mac平台尝试一下: 前期设置,参考另篇文章:macOS Sierra 10.12.6 odoo 10.0 开发环境配置 因为odoo11尚未正式发布, ...
- 添加ll命令
$ vim ~/.bashrcalias ll='ls -l' #加入此行 ps:加入后肯能无法当场起作用,执行该句: source ~/.bashrc
- java学习之路--继承(多态的动态绑定)
动态绑定过程中,对象调用对象方的执行过程 1:编译器查看对象的声明类型和方法名.有可能有多个方法名相同,但参数类型不一样的重载方法. 2:编译器查看调用方法时提供的参数类型.该过程叫重载解析,在相同的 ...
- Javaweb实现对mongodb的增删改查(附带源代码)
运行截图: 删除后的信息 项目源代码:https://www.cnblogs.com/post/readauth?url=/zyt-bg/p/9807396.html
- MUI学习01-顶部导航栏
建议:先看一下MUI注意事项 连接:http://ask.dcloud.net.cn/article/122 固定栏靠前 所谓的固定栏,也就是带有.mui-bar属性的节点,都是基于fixed定位的元 ...
- Gym 101981K - Kangaroo Puzzle - [玄学][2018-2019 ACM-ICPC Asia Nanjing Regional Contest Problem K]
题目链接:http://codeforces.com/gym/101981/problem/K Your friend has made a computer video game called “K ...
- English Time And Date
What's the Time in English? Explanation There are two common ways of telling the time. Formal but ea ...
- 关于springMVC的日志管理
主要是基于在spring aop特性. 1. 创建一个系统日志的操作类,类里面提供一个方法,可以向数据库或者表中写入:访问用户名,访问IP,操作时间,访问包名,具体函数名. /** * @Name S ...
- winform做的excel与数据库的导入导出
闲来无事,就来做一个常用的demo,也方便以后查阅 先看效果图 中间遇到的主要问题是获取当前连接下的所有的数据库以及数据库下所有的表 在网上查了查,找到如下的方法 首先是要先建立一个连接 _connM ...
- Django组件——分页器和中间件
分页器 Django内置分页器(paginator) 分页器函数为paginator,里面有几个重要的参数需要我们了解 paginator = Paginator(book_list, 10) #第二 ...