Luogu5155 USACO18DEC Balance Beam(概率期望+凸包)
假设已经求出了在每个点的最优期望收益,显然最优策略是仅当移动一次后的期望收益>当前点收益时移动。对于初始点,其两边各存在一个最近的不满足上述条件的位置,因此从初始点开始随机游走,直到移动到这两个点之一时停止即为最优方案。
设当前点为i,左边的停止点为x,右边的停止点为y,考虑在x停止和在y停止的概率各是多少。设从i点出发在x停止的概率为f(i),显然有f(x)=1,f(y)=0,f(i)=[f(i-1)+f(i+1)]/2。解方程得f(i)=(y-i)/(y-x)。在y停止的概率同理。
再设f[i]为从i点出发的最优期望收益,则f[i]=(y-i)/(y-x)*a[x]+(i-x)/(y-x)*a[y]。注意到这个式子实际上是(x,a[x])和(y,a[y])的连线在i点的值。所以如果任意两点间的连线都不高于在该点停止的收益,该点即为停止点。求出凸包即可。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 100010
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,a[N],q[N],m;
int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) a[i]=read();
q[++m]=;
for (int i=;i<=n+;i++)
{
while (m>&&1ll*(a[i]-a[q[m]])*(q[m]-q[m-])>1ll*(a[q[m]]-a[q[m-]])*(i-q[m])) m--;
q[++m]=i;
}
for (int i=;i<m;i++)
for (int j=q[i]+;j<=q[i+];j++)
if (j<=n) printf(LL,(1ll*a[q[i]]*(q[i+]-j)+1ll*a[q[i+]]*(j-q[i]))*/(q[i+]-q[i]));
return ;
}
Luogu5155 USACO18DEC Balance Beam(概率期望+凸包)的更多相关文章
- 洛谷P5155 [USACO18DEC]Balance Beam(期望,凸包)
你以为它是一个期望dp,其实它是一个凸包哒! 设平衡木长度为\(L\),把向右走平衡木那个式子写一下: \[dp[i]=\frac{dp[i+1]+dp[i-1]}{2}\] 然后会发现这是一个等差数 ...
- Luogu5155 [USACO18DEC]Balance Beam
题目链接:洛谷 这道题看起来是个期望题,但是其实是一道计算几何(这种题太妙了) 首先有一个很好的结论,在一个长度为$L$的数轴上,每次从$x$处出发,不停地走,有$\frac{x}{L}$的概率从右端 ...
- 题解-USACO18DEC Balance Beam详细证明
(翻了翻其他的题解,觉得它们没讲清楚这个策略的正确性) Problem 洛谷5155 题意概要:给定一个长为\(n\)的序列,可以选择以\(\frac 12\)的概率进行左右移动,也可以结束并得到当前 ...
- 题解 [USACO18DEC]Balance Beam
被概率冲昏的头脑~~~ 我们先将样例在图上画下来: 会发现,最大收益是: 看出什么了吗? 这不就是凸包吗? 跑一遍凸包就好了呀,这些点中,如果i号点是凸包上的点,那么它的ans就是自己(第二个点),不 ...
- [USACO18DEC]Balance Beam
题目链接:这里 或者这里 答案是很显然的,记\(g(i)\)为在\(i\)下平衡木时的期望收益 那么\(g(i)=max(f(i),\frac{g(i-1)+g(i+1)}{2})\) 好了做完了 T ...
- [USACO18DEC]Balance Beam P
根据题意不难发现这个模型是不好进行贪心的,于是可以考虑使用 \(dp\).可以令 \(dp_i\) 表示在 \(i\) 位置以最优策略能获得的报酬期望值,那么会有转移: \[dp_i = \max(f ...
- p5155 [USACO18DEC]Balance Beam
传送门 分析 https://www.luogu.org/blog/22112/solution-p5155 代码 #include<bits/stdc++.h> using namesp ...
- [bzoj5483][Usaco2018 Dec]Balance Beam_凸包_概率期望
bzoj5483 Usaco2018Dec Balance Beam 题目链接:https://lydsy.com/JudgeOnline/problem.php?id=5483 数据范围:略. 题解 ...
- 概率与期望详解!一次精通oi中的概率期望
目录 基础概念 最大值不超过Y的期望 概率为P时期望成功次数 基础问题 拿球 随机游走 经典问题 期望线性性练习题 例题选讲 noip2016换教室 区间交 0-1边树求直径期望 球染色 区间翻转 二 ...
随机推荐
- 在模拟器上运行Android项目时报错:DELETE_FAILED_INTERNAL_ERROR Error while Installing APKs
今天在Android Studio自带的模拟器上运行项目的时候,出现如下所示Error:当点击ok后,发现模拟器不能运行程序. 解决办法: 更改Android Studio中的设置: File---& ...
- mysql 5.7 版本的安装
目录 一.概述 二.MySQL安装 三.安装成功验证 四.NavicatforMySQL下载及使用 一.概述 MySQL版本:5.7.17 下载地址:http://rj.baidu.com/soft/ ...
- OpenStack中的虚拟机(/dev/mapper/centos-root)进行磁盘扩容
一.虚拟机上先扩展分区: 二.centos系统root登入,新建分区 2.1 [fdisk -l] 最大分区为/dev/sda2,说明新创建的分区将会是sda3(在后面的步骤会进行选择) 2.2 输入 ...
- Luogu3524 POI2011 Party 图论、构造
题目传送门:https://www.luogu.org/problemnew/show/P3524 大意:给一个$N$个点的图,其中一定有一个大小为$\frac{2}{3}N$的团,程序需给出一个大小 ...
- NOI.ac #31 MST DP、哈希
题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...
- TDD、BDD、ATDD、DDD 软件开发模式
TDD.BDD.ATDD.DDD 软件开发模式 四个开发模式意思: TDD:测试驱动开发(Test-Driven Development) BDD:行为驱动开发(Behavior Driven Dev ...
- Nginx反向代理中使用proxy_redirect重定向url
在使用Nginx做反向代理功能时,有时会出现重定向的url不是我们想要的url,这时候就可以使用proxy_redirect进行url重定向设置了.proxy_redirect功能比较强大,其作用是对 ...
- MySQL高可用架构-MHA环境部署记录
一.MHA介绍 MHA(Master High Availability)目前在MySQL高可用方面是一个相对成熟的解决方案,它由日本DeNA公司youshimaton(现就职于Facebook公司) ...
- part 1
注意:本次源码分析选择2.0.3(因为不支持IE6.7.8,就少了很多兼容的hack的写法,对了解jQuery的实现原理有很大的帮助) 1.jQuery有不同的版本,从2.x版本便不再支持IE6.7. ...
- 总结and规划
不知不觉中又过去了一年,马上就要读研究生了,因此有必要对自己进行必要的总结,以及对自己有个良好的规划. 首先,描述自己当前的心情——对未来充满了恐惧和焦虑. 马上大学就要毕业了,回首经历的大学生涯,似 ...