2.18比赛(T2,T3留坑)

pdf版题面

pdf版题解

超越一切(ak)

【题目描述】

夏洛可得到一个(h+1)×(w+1)的巧克力,这意味着她横着最多可 以切 h 刀,竖着最多可以切 w 刀 她想总共切 k 刀,每刀要么竖着切要么横着切,如果竖着切了 i 刀,横着切了 j 刀,会得到(i+1) ×(j+1)个巧克力,定义一个切 k 刀 的方案的代价是每一刀切完后巧克力个数之和,假设每刀切的位置是 随机选择的(即剩余能切的位置等概率随机选一个),请你求出期望 代价,对109+7 取模

【输入格式】

一行三个正整数 h,w,k

【输出格式】

一行一个整数表示答案

【样例 1 输入】

2 1 2

【样例 1 输出】

666666677

【数据范围】

本题有 6 个子任务,每个子任务只有 1 个测试点

对于 100%的数据,满足 h,w≤ 1018,k≤h+w

Subtask 1[10 pts]: h,w≤300

Subtask 2[10 pts]:h,w≤5000

Subtask 3[30 pts]:h,w≤106

Subtask 4[25 pts]:k≤107

Subtask 5[15 pts]:k=h+w

Subtask 6[10 pts]:无特殊限制 选手文件夹下的额外样例和最终数据范围相同

sol:题解写的非常好(大雾)

稍微解释一下,对于每一个矩形,只对它左下角的那个点记录贡献

记录的是中间的点的贡献,就是不在边界上的点,这样的点共有h*w个,每个点切中的概率就是前面那个式子

然后因为这是每个点的期望,统计答案时要乘以h*w

还有边上的点,对于最最左下角的点,k刀中每次切都会有1的贡献,所以ans+k

还有不在左下角的点,每次切都会新产生一个会造成贡献的点,ans+=(1+k)*k/2

标算已经在上面了,在贴一遍没什么意思,放一份较易理解的75pts的暴力好了

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
inline ll read()
{
ll s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const ll Mod=;
const ll N=;
ll h,w,k;
ll Jiec[N],Niy[N];
inline void Ad(ll &x,ll y)
{
x+=y;
x-=(x>=Mod)?(Mod):;
return;
}
inline ll Ksm(ll x,ll y)
{
ll ans=1ll;
while(y)
{
if(y&) ans=ans*x%Mod;
x=x*x%Mod;
y>>=;
}
return ans%Mod;
}
inline ll C(ll n,ll m)
{
if(!Niy[m]) Niy[m]=Ksm(Jiec[m],Mod-)%Mod;
if(!Niy[n-m]) Niy[n-m]=Ksm(Jiec[n-m],Mod-)%Mod;
return Jiec[n]*Niy[m]%Mod*Niy[n-m]%Mod;
}
int main()
{
freopen("ak.in","r",stdin);
freopen("ak.out","w",stdout);
ll i;
R(h); R(w); R(k);
Jiec[]=1ll;
for(i=;i<=h+w;i++)
{
Jiec[i]=Jiec[i-]*i%Mod;
}
ll ans=;
ll NN=Ksm(C(h+w,2ll),Mod-)%Mod;
Ad(ans,C(k + ,3ll)*NN%Mod);
ans=ans*(h*w%Mod)%Mod;
Ad(ans,(((+k)*k)>>)%Mod);
Ad(ans,k);
Wl(ans);
return ;
}
/*
input
1 2
output
*/

75pts暴力

附上ak王pfy的题解

2.18比赛(T2,T3留坑)的更多相关文章

  1. CPU虚拟化技术(留坑)

    留坑~~~ 不知道这个是这么实现的 CPU虚拟化技术就是单CPU模拟多CPU并行,允许一个平台同时运行多个操作系统,并且应用程序都可以在相互独立的空间内运行而互不影响,从而显著提高计算机的工作效率.虚 ...

  2. 【留坑】uva12299

    这么sb的题本来想练练手记过就是过不了 拍半天也没问题 留坑 哪天有空了去linux下面试试 #include<cstdio> #include<cstring> #inclu ...

  3. java 多线程,T1 T2 T3 顺序执行

    一.程序设计 1.抽象公共类PublicThread,具有先前线程属性previousThread.父类为Thread 2.在PublicThread的run()方法中判断previousThread ...

  4. 三个线程T1,T2,T3.保证顺序执行的三种方法

    经常看见面试题:有三个线程T1,T2,T3,有什么方法可以确保它们按顺序执行.今天手写测试了一下,下面贴出目前想到的3种实现方式 说明:这里在线程中我都用到了sleep方法,目的是更容易发现问题.之前 ...

  5. 【问题解决方案】Git bash进入多层子目录问题(通配符问题留坑)

    cd进入指定路径下:cd 斜杠 斜杠 方法一: 1- 撇丿,不是"那",盘符前面要加上 / (d盘前面也加,不加也行) 2- 路径名不区分大小写 3- 不用空格 4- 如果目录名中 ...

  6. [kuangbin带你飞]专题十一 网络流个人题解(L题留坑)

    A - ACM Computer Factory 题目描述:某个工厂可以利用P个部件做一台电脑,有N个加工用的机器,但是每一个机器需要特定的部分才能加工,给你P与N,然后是N行描述机器的最大同时加工数 ...

  7. 题解 queen(留坑)

    传送门 博客园突然打不开了,奇奇怪怪的-- 少写个等号没看出来 nm写反了没看出来 考完5min全拍出来了 手残属性加持 不对拍等于爆零 yysy,我连卢卡斯定理的存在都忘了-- 发现要让一大堆皇后能 ...

  8. join控制线程的执行循序 T1 -> T2 -> T3

    /** * 控制线程的执行循序 T1 -> T2 -> T3 * join实现 */ public static void join(){ Thread t1 = new Thread(( ...

  9. 题解 c(留坑)

    传送门 这题卡常--而且目前还没有卡过去 首先以原树重心为根,向所有子树重心连边,可以建立一棵点分树 点分树有两个性质: 一个是树高只有log层 另一个是两点在点分树上的lca一定在原树上两点间的树上 ...

随机推荐

  1. AliOS-Things ESP8266 编译下载

    首先:环境搭建,可以参照https://github.com/alibaba/AliOS-Things/wiki/Quick-Start.zh:我采用的是linux系统: 其次:一般项目文件夹放置在A ...

  2. Android学习之基础知识五—RecyclerView(滚动控件)

    RecyclerView可以说是增强版的ListView,不仅具有ListVIew的效果,还弥补许多ListView的不足. 一.RecyclerView的基本用法 与百分比布局类似,Recycler ...

  3. Skyline中的GDAL

    安装Skyline的TerraExplorer Pro软件后,我们很容易在其安装目录中找到这样一些文件: gdal.dll.gdal_csharp.dll.ogr_csharp.dll.osr_csh ...

  4. TCP/IP协议--TCP协议概括和TCP连接的建立和终止

    TCP提供一种面向连接的.可靠的字节流服务.面向连接指,发送和接收方在交换数据前必须建立一个TCP连接.顺便说下,一个TCP连接只有两方,因此广播和多播是不能应用于TCP的.字节流指,两个应用程序通过 ...

  5. Luogu1084 NOIP2012D2T3 疫情控制 二分答案、搜索、贪心、倍增

    题目传送门 题意太长就不给了 发现答案具有单调性(额外的时间不会对答案造成影响),故考虑二分答案. 贪心地想,在二分了一个时间之后,军队尽量往上走更好.所以我们预处理倍增数组,在二分时间之后通过倍增看 ...

  6. React-组件 & Props

    React元素可以只是DOM标签 const element = <div />; React元素也可以是用户自定义的组件: const element = <Welcome nam ...

  7. Java 面试题 == 和 equals 的区别

    int和Integer的区别 1.Integer是int的包装类,int则是java的一种基本数据类型 2.Integer变量必须实例化后才能使用,而int变量不需要 3.Integer实际是对象的引 ...

  8. SpringCloud Eureka参数配置项详解(转)

    Eureka涉及到的参数配置项数量众多,它的很多功能都是通过参数配置来实现的,了解这些参数的含义有助于我们更好的应用Eureka的各种功能,下面对Eureka的配置项做具体介绍,供大家参考. Eure ...

  9. CentOS搭建V~P~N服务,实现虚拟专用网络

    什么是V-P-N V-P-N即虚拟专用网络,它的功能是:在公用网络上建立专用网络,进行加密通讯. V-P-N网关通过对数据包的加密和数据包目标地址的转换实现远程访问.V-P-N有多种分类方式,主要是按 ...

  10. Socket入门笔记 用TcpClient实现一个简易聊天室

    效果 实现思路 使用TcpListener建一个服务器,接收所有客户端发送的消息,然后由服务器再发送到其他客户端 客户端使用TcpClient,发消息给服务器,接收服务器的消息,不和其他客户端直接交互 ...