BZOJ4001 TJOI2015概率论(生成函数+卡特兰数)
设f(n)为n个节点的二叉树个数,g(n)为n个节点的二叉树的叶子数量之和。则答案为g(n)/f(n)。
显然f(n)为卡特兰数。有递推式f(n)=Σf(i)f(n-i-1) (i=0~n-1)。
类似地,左子树节点数为i时右子树有f(n-i-1)种情况,那么可以对左子树的叶子节点数之和计数,显然再乘2就是总数了。有递推式g(n)=2Σg(i)f(n-i-1) (i=0~n-1)。
因为递推式是卷积形式,考虑生成函数。设F(x)、G(x)分别为f(n)、g(n)的生成函数(均为无穷级数)。则有F(x)=xF2(x)+1。乘x是为了给他进一位。因为f(0)=f(1)=1,只要补上x^0位上的1就好了。解得F(x)=[1±√(1-4x)]/(2x)。其中√1-4x可以用广义二项式定理计算出来,发现其每一项都是负数,于是我们取F(x)=[1-√(1-4x)]/(2x)。
同样的道理,G(x)=2xF(x)G(x)+x。因为g(0)=0,g(1)=1,进一位后需要补上x^1位上的1。解得G(x)=x/√(1-4x)。
有了生成函数我们可以暴推原数列了。
即g(n)=C(-1/2,n-1)·(-4)n-1。这个式子得化的更好看一点。不妨展开组合数。
则C(-1/2,n)=(2n)!/(2n·n!)·(-1/2)n/n!=(-1/4)n·(2n)!/n!/n!=(-1/4)n·C(2n,n)。
g(n)=(-1/4)n-1·C(2n-2,n-1)·(-4)n-1=C(2n-2,n-1)。简直优美到爆炸!
我们知道卡特兰数的通项公式是f(n)=C(2n,n)/(n+1)。
那么g(n)/f(n)=[(2n-2)!/(n-1)!/(n-1)!]/[(2n)!/n!/n!/(n+1)]=n2(n+1)/(2n)/(2n-1)=n(n+1)/2(2n-1)。
于是一句话就做完了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
double n;
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4001.in","r",stdin);
freopen("bzoj4001.out","w",stdout);
const char LL[]="%I64d";
#else
const char LL[]="%lld";
#endif
n=read();
printf("%.9lf",n*(n+)//(*n-));
return ;
}
BZOJ4001 TJOI2015概率论(生成函数+卡特兰数)的更多相关文章
- 【BZOJ4001】[TJOI2015] 概率论(卡特兰数)
点此看题面 大致题意: 问你一棵\(n\)个节点的有根二叉树叶节点的期望个数. 大致思路 看到期望,比较显然可以想到设\(num_i\)为\(i\)个节点的二叉树个数,\(tot_i\)为所有\(i\ ...
- bzoj4001: [TJOI2015]概率论
题目链接 bzoj4001: [TJOI2015]概率论 题解 生成函数+求导 设\(g(n)\)表示有\(n\)个节点的二叉树的个数,\(g(0) = 1\) 设\(f(x)\)表示\(n\)个节点 ...
- BZOJ4001[TJOI2015]概率论——卡特兰数
题目描述 输入 输入一个正整数N,代表有根树的结点数 输出 输出这棵树期望的叶子节点数.要求误差小于1e-9 样例输入 1 样例输出 1.000000000 提示 1<=N<=10^9 设 ...
- BZOJ4001:[TJOI2015]概率论(卡特兰数,概率期望)
Description Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Output 1. ...
- 2018.12.31 bzoj4001: [TJOI2015]概率论(生成函数)
传送门 生成函数好题. 题意简述:求nnn个点的树的叶子数期望值. 思路: 考虑fnf_nfn表示nnn个节点的树的数量. 所以有递推式f0=1,fn=∑i=0n−1fifn−1−i(n>0) ...
- 【bzoj4001】[TJOI2015]概率论 生成函数+导数
题目描述 输入 输入一个正整数N,代表有根树的结点数 输出 输出这棵树期望的叶子节点数.要求误差小于1e-9 样例输入 1 样例输出 1.000000000 题解 生成函数+导数 先考虑节点个数为$n ...
- BZOJ4001 [TJOI2015]概率论 【生成函数】
题目链接 BZOJ4001 题解 Miskcoo 太神了,orz #include<algorithm> #include<iostream> #include<cstr ...
- 【BZOJ4001】[TJOI2015]概率论(生成函数)
[BZOJ4001][TJOI2015]概率论(生成函数) 题面 BZOJ 洛谷 题解 这题好仙啊.... 设\(g_n\)表示\(n\)个点的二叉树个数,\(f_n\)表示\(n\)个点的二叉树的叶 ...
- [luogu3978][bzoj4001][TJOI2005]概率论【基尔霍夫矩阵+卡特兰数】
题目描述 为了提高智商,ZJY开始学习概率论.有一天,她想到了这样一个问题:对于一棵随机生成的n个结点的有根二叉树(所有互相不同构的形态等概率出现),它的叶子节点数的期望是多少呢? 判断两棵树是否同构 ...
随机推荐
- 分析网络流量Capsa笔记
Capsa是一款网络分析仪,允许您监控网络流量,解决网络问题并分析数据包.通过提供生动的图表,通过设计良好的GUI提供丰富的统计信息和实时警报,Capsa可让IT管理员实时识别,诊断和解决有线和无线网 ...
- ASP.NET MVC学习笔记(一) 从路由开始创建mvc
之前一篇写一半发现版本太老了,是基于mvc2的. 两本参考书编写的顺序各方面都不太一样.决定重新写一篇. 我这篇文章基于mvc5,vs2015 参考书:Will保哥的ASP.NET MVC4开发指南 ...
- 实现Repeater控件的记录单选
有朋友问及,在Repeater控件中第一列放置一个RadioButton,实现对记录的单选. 下面Insus.NET想举个例子来实现与说明. 为Repeater控件准备数据: 在ASPX网页上,写好R ...
- Linux查看特定端口是否被占用并kill掉相关进程
今天在搭建Zookeeper集群的时候,需要频繁启动zookeeper,但是启动的时候,有时会提示下列错误信息: zookeeper需要的地址已经被占用了,其实是因为上一次的zookeeper没有关闭 ...
- 大话设计模式(C#)
还是那几句话: 学无止境,精益求精 十年河东,十年河西,莫欺少年穷 学历代表你的过去,能力代表你的现在,学习代表你的将来 问个问题: 如何写出高质量的代码?灵活,可扩展,易读,易维护,可重构,可复用. ...
- jinja2模块使用教程
模板 要了解jinja2,那么需要先理解模板的概念.模板在Python的web开发中广泛使用,它能够有效的将业务逻辑和页面逻辑分开,使代码可读性增强.并且更加容易理解和维护. 模板简单来说就是一个其中 ...
- .Net版本依赖之坑引发的搜查
前言 今天上午,一个客户反馈XX消息没有推送到第三方链接.于是我查看了推送日志列表,并没有今天的.接着登录服务器查询文件日志,看到了记录.我们的代码步骤是消息先推送到消息队列,消费消息队列时,记录文件 ...
- Nginx的location配置规则梳理
Nginx几乎是当下绝大多数公司在用的web应用服务,熟悉Nginx的配置,对于我们日常的运维工作是至关重要的,下面就Nginx的location配置进行梳理: 1)location匹配的是nginx ...
- sixsix团队M2阶段Postmortem
设想和目标 1. 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? 要解决的问题:目前外卖网站比较多,用户很难快速找到合适的外卖,我们集合各个网站的外卖信息,为用户提 ...
- Linux内核分析——字符集总结与分析
一. 设置修改系统.应用默认字符集 1. 查看虚拟机的字符集: 由此可见,该虚拟机的字符集为zh_CN.UTF-8. 2. 查看服务器支持的编码方式 3. 修改字符集类型 上图可见,LANG字符 ...