BZOJ4001 TJOI2015概率论(生成函数+卡特兰数)
设f(n)为n个节点的二叉树个数,g(n)为n个节点的二叉树的叶子数量之和。则答案为g(n)/f(n)。
显然f(n)为卡特兰数。有递推式f(n)=Σf(i)f(n-i-1) (i=0~n-1)。
类似地,左子树节点数为i时右子树有f(n-i-1)种情况,那么可以对左子树的叶子节点数之和计数,显然再乘2就是总数了。有递推式g(n)=2Σg(i)f(n-i-1) (i=0~n-1)。
因为递推式是卷积形式,考虑生成函数。设F(x)、G(x)分别为f(n)、g(n)的生成函数(均为无穷级数)。则有F(x)=xF2(x)+1。乘x是为了给他进一位。因为f(0)=f(1)=1,只要补上x^0位上的1就好了。解得F(x)=[1±√(1-4x)]/(2x)。其中√1-4x可以用广义二项式定理计算出来,发现其每一项都是负数,于是我们取F(x)=[1-√(1-4x)]/(2x)。
同样的道理,G(x)=2xF(x)G(x)+x。因为g(0)=0,g(1)=1,进一位后需要补上x^1位上的1。解得G(x)=x/√(1-4x)。
有了生成函数我们可以暴推原数列了。
即g(n)=C(-1/2,n-1)·(-4)n-1。这个式子得化的更好看一点。不妨展开组合数。
则C(-1/2,n)=(2n)!/(2n·n!)·(-1/2)n/n!=(-1/4)n·(2n)!/n!/n!=(-1/4)n·C(2n,n)。
g(n)=(-1/4)n-1·C(2n-2,n-1)·(-4)n-1=C(2n-2,n-1)。简直优美到爆炸!
我们知道卡特兰数的通项公式是f(n)=C(2n,n)/(n+1)。
那么g(n)/f(n)=[(2n-2)!/(n-1)!/(n-1)!]/[(2n)!/n!/n!/(n+1)]=n2(n+1)/(2n)/(2n-1)=n(n+1)/2(2n-1)。
于是一句话就做完了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
double n;
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4001.in","r",stdin);
freopen("bzoj4001.out","w",stdout);
const char LL[]="%I64d";
#else
const char LL[]="%lld";
#endif
n=read();
printf("%.9lf",n*(n+)//(*n-));
return ;
}
BZOJ4001 TJOI2015概率论(生成函数+卡特兰数)的更多相关文章
- 【BZOJ4001】[TJOI2015] 概率论(卡特兰数)
点此看题面 大致题意: 问你一棵\(n\)个节点的有根二叉树叶节点的期望个数. 大致思路 看到期望,比较显然可以想到设\(num_i\)为\(i\)个节点的二叉树个数,\(tot_i\)为所有\(i\ ...
- bzoj4001: [TJOI2015]概率论
题目链接 bzoj4001: [TJOI2015]概率论 题解 生成函数+求导 设\(g(n)\)表示有\(n\)个节点的二叉树的个数,\(g(0) = 1\) 设\(f(x)\)表示\(n\)个节点 ...
- BZOJ4001[TJOI2015]概率论——卡特兰数
题目描述 输入 输入一个正整数N,代表有根树的结点数 输出 输出这棵树期望的叶子节点数.要求误差小于1e-9 样例输入 1 样例输出 1.000000000 提示 1<=N<=10^9 设 ...
- BZOJ4001:[TJOI2015]概率论(卡特兰数,概率期望)
Description Input 输入一个正整数N,代表有根树的结点数 Output 输出这棵树期望的叶子节点数.要求误差小于1e-9 Sample Input 1 Sample Output 1. ...
- 2018.12.31 bzoj4001: [TJOI2015]概率论(生成函数)
传送门 生成函数好题. 题意简述:求nnn个点的树的叶子数期望值. 思路: 考虑fnf_nfn表示nnn个节点的树的数量. 所以有递推式f0=1,fn=∑i=0n−1fifn−1−i(n>0) ...
- 【bzoj4001】[TJOI2015]概率论 生成函数+导数
题目描述 输入 输入一个正整数N,代表有根树的结点数 输出 输出这棵树期望的叶子节点数.要求误差小于1e-9 样例输入 1 样例输出 1.000000000 题解 生成函数+导数 先考虑节点个数为$n ...
- BZOJ4001 [TJOI2015]概率论 【生成函数】
题目链接 BZOJ4001 题解 Miskcoo 太神了,orz #include<algorithm> #include<iostream> #include<cstr ...
- 【BZOJ4001】[TJOI2015]概率论(生成函数)
[BZOJ4001][TJOI2015]概率论(生成函数) 题面 BZOJ 洛谷 题解 这题好仙啊.... 设\(g_n\)表示\(n\)个点的二叉树个数,\(f_n\)表示\(n\)个点的二叉树的叶 ...
- [luogu3978][bzoj4001][TJOI2005]概率论【基尔霍夫矩阵+卡特兰数】
题目描述 为了提高智商,ZJY开始学习概率论.有一天,她想到了这样一个问题:对于一棵随机生成的n个结点的有根二叉树(所有互相不同构的形态等概率出现),它的叶子节点数的期望是多少呢? 判断两棵树是否同构 ...
随机推荐
- Oracle 把查询的多个字段赋值给多个变量
select f1,f2,f3 into v1,v2,v3 from tab1
- CF1060E Sergey and Subways 假的点分治
题目传送门:http://codeforces.com/problemset/problem/1060/D 题意:给出$N$个点的一棵树,现在将距离为$2$的点之间连一条边,求所有点对之间最短路的和, ...
- VB6 变量定义作用域的一个奇特形式
C#或JAVA 下面的i定义是只会限定在if 条件块里的: if (1 == 2) { int i = 000; } else { i = 111;// 错误,未定义. } i = 222;//错误 ...
- [转]zookeeper-端口说明
一.zookeeper有三个端口(可以修改) 1.2181 2.3888 3.2888 二.3个端口的作用 1.2181:对cline端提供服务 2.3888:选举leader使用 3.2888:集群 ...
- [Spark][Hive][Python][SQL]Spark 读取Hive表的小例子
[Spark][Hive][Python][SQL]Spark 读取Hive表的小例子$ cat customers.txt 1 Ali us 2 Bsb ca 3 Carls mx $ hive h ...
- python第二周
第二周,PYTHON图形绘制 一,计算机技术的演进发展 1946-1981.从第一台计算机的诞生到IBM的PC机的出现,我们称之为”计算机系统结构时代“.————这个时代重点在解决计算能力问题 198 ...
- C/C++中连接函数strcat的应用(简单讲解)
有位学弟问到我如何将两个字符连接起来,想想java/python里面可以直接用+连接起来,可是C/C++里面有没有这么方便的做法呢? 答案是有的,在C语言的string.h库中有个神奇的函数叫做str ...
- Linux下对文件进行加密备份的操作记录
由于公司之前在阿里云上购买了一些机器,后续IDC建设好后,又将线上业务从阿里云上迁移到IDC机器上了,为了不浪费阿里云上的这几台机器资源,打算将这些机器做成IP SAN共享存储,然后作为IDC数据的一 ...
- 分布式监控系统Zabbix--完整安装记录 -添加web页面监控
通过zabbix做web监控,不仅仅可以监控到站点的响应时间,还可以根据站点返回的状态码或响应时间做报警设置,比如说对某个url进行监控,当访问返回的状态码是非200状态时都报警(创建触发器即可).下 ...
- Dubbo原理和源码解析之“微内核+插件”机制
github新增仓库 "dubbo-read"(点此查看),集合所有<Dubbo原理和源码解析>系列文章,后续将继续补充该系列,同时将针对Dubbo所做的功能扩展也进行 ...