悬线法 || BZOJ 1057: [ZJOI2007]棋盘制作 || Luogu P1169 [ZJOI2007]棋盘制作
题面:P1169 [ZJOI2007]棋盘制作
题解:
基本是悬线法板子,只是建图判断时有一点点不同。
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#define min(a,b) ((a)<(b)?(a):(b))
#define max(a,b) ((a)>(b)?(a):(b))
using namespace std;
inline int rd(){
int x=,f=;char c=getchar();
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return f*x;
}
const int maxn=,maxm=maxn;
int N,M,C[maxn][maxm],H[maxn][maxm],L[maxn][maxm],R[maxn][maxm],ans1=,ans2=,w;
int main(){
N=rd();M=rd();
for(int i=;i<=N;i++)
for(int j=;j<=M;j++)
C[i][j]=rd();
for(int i=;i<=N;i++)
for(int j=;j<=M;j++){
if(i==||C[i][j]!=C[i-][j])
H[i][j]=H[i-][j]+;
else H[i][j]=;//H
if(j==||C[i][j]!=C[i][j-])
L[i][j]=L[i][j-]+;
else L[i][j]=;//L
int r=M-j+;
if(j==||C[i][r]!=C[i][r+])
R[i][r]=R[i][r+]+;
else R[i][r]=;
}
for(int i=;i<=N;i++)
for(int j=;j<=M;j++){
if(H[i][j]>){
L[i][j]=min(L[i][j],L[i-][j]);
R[i][j]=min(R[i][j],R[i-][j]);
}
w=L[i][j]+R[i][j]-;
ans1=max(ans1,min(w,H[i][j])*min(w,H[i][j]));
ans2=max(ans2,w*H[i][j]);
}
printf("%d\n%d\n",ans1,ans2);
return ;
}
By:AlenaNuna
悬线法 || BZOJ 1057: [ZJOI2007]棋盘制作 || Luogu P1169 [ZJOI2007]棋盘制作的更多相关文章
- BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )
对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...
- BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp
1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑 ...
- 【BZOJ】1057 [ZJOI2007]棋盘制作(悬线法)
题目 传送门:QWQ 分析 先把题目给出的矩阵变换一下,如果$ a[i][j] $中$ i+j \mod 2 = 1 $那么就对$ a[i][j] $取一下反. 接着就是求原图中最大的0.1子矩阵 详 ...
- 【BZOJ-3039&1057】玉蟾宫&棋盘制作 悬线法
3039: 玉蟾宫 Time Limit: 2 Sec Memory Limit: 128 MBSubmit: 753 Solved: 444[Submit][Status][Discuss] D ...
- P1169 [ZJOI2007]棋盘制作 && 悬线法
P1169 [ZJOI2007]棋盘制作 给出一个 \(N * M\) 的 \(01\) 矩阵, 求最大的正方形和最大的矩形交错子矩阵 \(n , m \leq 2000\) 悬线法 悬线法可以求出给 ...
- 洛谷P1169 [ZJOI2007]棋盘制作 悬线法 动态规划
P1169 [ZJOI2007]棋盘制作 (逼着自己做DP 题意: 给定一个包含0,1的矩阵,求出一个面积最大的正方形矩阵和长方形矩阵,要求矩阵中相邻两个的值不同. 思路: 悬线法. 用途: 解决给定 ...
- DP(悬线法)【P1169】 [ZJOI2007]棋盘制作
顾z 你没有发现两个字里的blog都不一样嘛 qwq 题目描述-->p1169 棋盘制作 题目大意 给定一个01棋盘,求其中01交错的最大正方形与矩形. 解题思路: 动态规划---悬线法 以下内 ...
- P1169 [ZJOI2007]棋盘制作 DP悬线法
题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白 ...
- P1169 [ZJOI2007]棋盘制作[悬线法/二维dp]
题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白 ...
随机推荐
- Node.js模板引擎的深入探讨
每次当我想用 node.js 来写一个 web 相关项目的时候.我总是会陷入无比的纠结.原因是 JavaScript 生态圈里的模板引擎实在太多了,但那么多却实在找不出一个接近完美的,所谓完美的概念就 ...
- JSP简单练习-猜字母游戏
<!-- guessCharExample.jsp --> <%@ page contentType="text/html; charset=gb2312" %& ...
- MySQL执行计划解析
前言 在实际数据库项目开发中,由于我们不知道实际查询时数据库里发生了什么,也不知道数据库是如何扫描表.如何使用索引的,因此,我们能感知到的就只有SQL语句的执行时间.尤其在数据规模比较大的场景下,如何 ...
- Mathematica查看内部定义
<< GeneralUtilities`; PrintDefinitions[IntegerReverse]
- [svc]容器网络学习索引及网络监控
整理的可能有些误失,抽时间在细细的分类完善下. 发现这篇对于网络从低到高层协议整理的还不错 每层都有一些有意思的话题 一些协议有一些设计上的弱点, 所以产生了种种的网络层安全问题 一般我们学一些 1, ...
- 数字签名与HTTPS详解
因为HTTP协议本身存在着明文传输.不能很好的验证通信方的身份和无法验证报文的完整性等一些安全方面的确点,所以才有了HTTPS的缺陷.HTTPS确切的的说不是一种协议,而是HTTP + SSL (TS ...
- [C++]“error C2712: 无法在要求对象展开的函数中使用__try”解决方案
https://blog.csdn.net/shiqw5696/article/details/80664749 前段时间写了一篇关于C++异常捕获及异常处理的文章:c++异常捕获及异常处理try-t ...
- 记录一下idea自动生成Entity
最近在鼓捣spring -boot ,真好用,学习到jpa. 通过生成Entity 文件,能够快速的生成数据库,并且使用 JpaRepository 的基本增删查改 方法,好用的一批. 可是随之,问题 ...
- Odoo 进销存报表现已开源
根据会计区间或自定义查询时间段,对仓库的产品出入库情况进行查看: 模块地址参见内部群公告.
- js对象与字符串的想到转换
js JSON.stringify(jsObj); 对象转字符串JSON.parse(str); 字符串转对象