UOJ219 NOI2016 优秀的拆分 二分、字符串哈希
题目可以转化为求\(AA\)的数量,设\(cnt1_x\)表示左端点为\(x\)的\(AA\)的数量,\(cnt2_x\)表示右端点为\(x\)的\(AA\)的数量,那么答案就是\(\sum cnt2_i \times cnt1_{i+1}\)
比较朴素的想法是枚举两个后缀然后哈希/SA判断这两个后缀的LCP是否足够长,能够拼成一个\(AA\)形式的串。然后这样就能拿95分???
考虑\(n\)比较大的时候优化枚举。我们对于所有\(len \in [1,\frac{N}{2}]\),在串中标记若干个关键点,两个相邻的关键点的距离为\(len\)。那么一个形如\(AA\)、长度为\(2 \times len\)的串会覆盖恰好\(2\)个关键点,而且两个关键点在覆盖了它的\(A\)串中的位置是一样的。
这意味着对于这两个关键点\(i,j = i+len\),\(min(LCP(suffix_i,suffix_j),len) + min(len,LCS(prefix_i , prefix_j)) > len\)(与\(len\)取\(min\)的原因是不能让覆盖范围超出了\(i,j\)两个点)。这给了我们需要求\(LCP\)与\(LCS\)的信息。SA与二分+Hash均可(反正这题不卡复杂度)。
当然做到上面我们仍然没有优化复杂度……
接下来,考虑算出了\(q=min(LCP(suffix_i,suffix_j),len)\)与\(p=min(len,LCS(prefix_i , prefix_j))\),这意味着串\(s_{[i-p+1 , i + q - 1]}\)与\(s_{[j-p+1,j+q-1]}\)是相等的,而\(j = i + len\)。那么我们随意取出\(s_{[i-p+1 , i + q - 1]}\)的一段长度为\(len\)的段,它的右边都一定紧接着一段长度为\(len\)并且与它相同的段。所以\(cnt1_{i-p+1,i+q-len}\)都会这一步中\(+1\),同时\(cnt2_{i-p+1+2 \times len , i + q + len}\)也会\(+1\)。使用差分数组维护,最后前缀和一下就可以统计答案了。
因为调和级数\(\sum \limits _{i=1}^n \frac{n}{i} < nlogn\),所以总复杂度为\(O(nlogn)\)(使用SA)或者\(O(nlog^2n)\)(使用二分+Hash)
#include<bits/stdc++.h>
#define ll long long
#define PLL pair < long long , long long >
//This code is written by Itst
using namespace std;
inline int read(){
int a = 0;
char c = getchar();
bool f = 0;
while(!isdigit(c) && c != EOF){
if(c == '-')
f = 1;
c = getchar();
}
if(c == EOF)
exit(0);
while(isdigit(c)){
a = a * 10 + c - 48;
c = getchar();
}
return f ? -a : a;
}
const int MAXN = 3e4 + 7 , seed = 131 , MOD1 = 1e9 + 7 , MOD2 = 1e9 + 9;
char s[MAXN];
int L , sum1[MAXN] , sum2[MAXN];
ll Hash[MAXN][2] , poww[MAXN][2] , ans;
inline void init_hash(){
for(int i = 1 ; i <= L ; ++i){
Hash[i][0] = (Hash[i - 1][0] * seed + s[i]) % MOD1;
Hash[i][1] = (Hash[i - 1][1] * seed + s[i]) % MOD2;
}
}
inline PLL get_hash(int l , int r){
return PLL((Hash[r][0] - Hash[l - 1][0] * poww[r - l + 1][0] % MOD1 + MOD1) % MOD1 , (Hash[r][1] - Hash[l - 1][1] * poww[r - l + 1][1] % MOD2 + MOD2) % MOD2);
}
inline int calc_LCP(int p , int q){
int l = 0 , r = min(q - p , L - q + 1);
while(l < r){
int mid = (l + r + 1) >> 1;
get_hash(p , p + mid - 1) == get_hash(q , q + mid - 1) ? l = mid : r = mid - 1;
}
return l;
}
inline int calc_LCS(int p , int q){
int L = 0 , R = min(q - p , p);
while(L < R){
int mid = (L + R + 1) >> 1;
get_hash(p - mid + 1 , p) == get_hash(q - mid + 1 , q) ? L = mid : R = mid - 1;
}
return L;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("in","r",stdin);
//freopen("out","w",stdout);
#endif
poww[0][0] = poww[0][1] = 1;
for(int i = 1 ; i <= 3e4 ; ++i){
poww[i][0] = poww[i - 1][0] * seed % MOD1;
poww[i][1] = poww[i - 1][1] * seed % MOD2;
}
for(int T = read() ; T ; --T){
memset(sum1 , 0 , sizeof(sum1));
memset(sum2 , 0 , sizeof(sum2));
scanf("%s" , s + 1);
L = strlen(s + 1);
init_hash();
for(int i = 1 ; i < L ; ++i)
for(int j = 1 ; j + i <= L ; j += i){
int p = calc_LCS(j , j + i) , q = calc_LCP(j , j + i);
if(p + q - 1 >= i){
++sum1[j - p + 1];
--sum1[j + q - i + 1];
++sum2[j - p + 1 + 2 * i - 1];
--sum2[j + q + i];
}
}
for(int i = 1 ; i <= L ; ++i){
sum1[i] += sum1[i - 1];
sum2[i] += sum2[i - 1];
}
ans = 0;
for(int i = 1 ; i < L ; ++i)
ans += sum2[i] * sum1[i + 1];
cout << ans << endl;
}
return 0;
}
UOJ219 NOI2016 优秀的拆分 二分、字符串哈希的更多相关文章
- BZOJ4650/UOJ219 [Noi2016]优秀的拆分
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...
- [UOJ#219][BZOJ4650][Noi2016]优秀的拆分
[UOJ#219][BZOJ4650][Noi2016]优秀的拆分 试题描述 如果一个字符串可以被拆分为 AABBAABB 的形式,其中 A 和 B 是任意非空字符串,则我们称该字符串的这种拆分是优秀 ...
- [NOI2016]优秀的拆分(SA数组)
[NOI2016]优秀的拆分 题目描述 如果一个字符串可以被拆分为 \(AABB\) 的形式,其中 A和 B是任意非空字符串,则我们称该字符串的这种拆分是优秀的. 例如,对于字符串 \(aabaaba ...
- 题解-NOI2016 优秀的拆分
NOI2016 优秀的拆分 \(T\) 组测试数据.求字符串 \(s\) 的所有子串拆成 \(AABB\) 形式的方案总和. 数据范围:\(1\le T\le 10\),\(1\le n\le 3\c ...
- [NOI2016]优秀的拆分&&BZOJ2119股市的预测
[NOI2016]优秀的拆分 https://www.lydsy.com/JudgeOnline/problem.php?id=4650 题解 如果我们能够统计出一个数组a,一个数组b,a[i]表示以 ...
- luogu1117 [NOI2016]优秀的拆分
luogu1117 [NOI2016]优秀的拆分 https://www.luogu.org/problemnew/show/P1117 后缀数组我忘了. 此题哈希可解决95分(= =) 设\(l_i ...
- 【BZOJ4560】[NOI2016]优秀的拆分
[BZOJ4560][NOI2016]优秀的拆分 题面 bzoj 洛谷 题解 考虑一个形如\(AABB\)的串是由两个形如\(AA\)的串拼起来的 那么我们设 \(f[i]\):以位置\(i\)为结尾 ...
- 并不对劲的bzoj4650:loj2083:uoj219:p1117:[NOI2016]优秀的拆分
题目大意 "优秀的拆分"指将一个字符串拆分成AABB的形式 十次询问,每次给出一个字符串S(\(|S|\leq3*10^4\)),求它的所有子串的优秀的拆分的方案数之和 题解 此题 ...
- [BZOJ]4650: [Noi2016]优秀的拆分
Time Limit: 30 Sec Memory Limit: 512 MB Description 如果一个字符串可以被拆分为 AABBAABB 的形式,其中 AA 和 BB 是任意非空字符串, ...
随机推荐
- logo.ico在html网页中的实现
<!doctype html><html> <head> <meta charset="utf-8"/> <title> ...
- 使用CSS兄弟选择器完成复杂垂直边距(vertical margins)的设计
-------------------sibling选择器如何在完成复杂设计要求的同时,保持CSS可读 这是web前端开发过程中开始简单逐步变的复杂的例子之一:将一篇文章中的所有元素应用垂直边距(ve ...
- PostGIS中生成GUID字段值
create extension "uuid-ossp" update base_region set region_id = uuid_generate_v4() update ...
- 二. Redis 安全性
由于Redis速度相当快,当一台服务器比较好的时候,一个外部用户可以在一秒钟内进行150K(15万)次的密码尝试,因此意味着你需要设置一个非常非常强大的密码来防止暴力破解. 1.设置密码 (1). 通 ...
- CSS模糊效果及其兼容方法
今天在整理IE滤镜时网站访问这里,居然找到模糊滤镜blur(),感觉太不可思议了,想不到IE居然会有这么多种滤镜效果,这基本上是模仿PS的.今天的重点是模糊滤镜 CSS模糊效果及其兼容方法 实例 兼容 ...
- 03-12_MBean层次结构
本文重点: Mbeans层次结构与WLST关系介绍 WebLogic Mbeans的类型 weblogic服务器的MBeans生命周期 Mbeans层次结构与WLST关系介绍: ...
- python 序列化pickle 和 encode的区别
我们把变量从内存中变成可存储或传输的过程称之为序列化. 序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输到别的机器上. 反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即un ...
- Django的settings配置
静态文件 STATIC_URL = '/static/' # 别名 STATICFILES_DIRS = [ os.path.join(BASE_DIR,'static'), os.path.join ...
- VCS双机+oracle 11gR2+ASM主机名修改
----------------------------------------------------------------------------VCS修改主机名---------------- ...
- IDEA多线程调试设置
转至:http://blog.csdn.net/kevindai007/article/details/71412324 使用idea调试多线程的时候发现多线程无法调试,后来经过搜索发现,idea的断 ...