IIC双向电平转换电路设计
现代的集成电路工艺加工的间隙可达0.5μm 而且很少限制数字I/O 信号的最大电源电压和逻辑电平。
为了将这些低电压电路与已有的5V或其他I/O电压器件连接起来,接口需要一个电平转换器。对于双向的总线系统像I2C 总线电平转换器必须也是双向的,不需要方向选择信号。解决这个问题的最简单方法是连接一个分立的MOS-FET管到每条总线线路,尽管这个方法非常简单但它不仅能不用方向信号就能满足双向电平转换的要求还能将掉电的总线部分与剩下的总线系统隔离开来,保护低电压器件防止高电压器件的高电压毛刺波。
双向电平转换器可以用于标准模式高达100kbit/s 或快速模式高达400kbit/s I2C 总线系统。
通过使用双向电平转换器可以将电源电压和逻辑电平不同的两部分I2C 总线连接起来配置入下图所示。左边的低电压部分有上拉电阻而且器件连接到3.3V 的电源电压,右边的高电平部分有上拉电阻器件连接到5V 电源电压。两部分的器件都有与逻辑输入电平相关的电源电压和开漏输出配置的I/O。
每条总线线路的电平转换器是相同的而且由一个分立的N通道增强型MOS-FET管串行数据线SDA的TR1和串行时钟线SCL 的TR2 组成。门极g 要连接到电源电压VDD1, 源极s 连接到低电压部分的总线线路而漏极d 则连接到高电压部分的总线线路。很多MOS-FET 管的基底与它的源极内部连接,如果内部没有,就必须建立一个外部连接。因此,每个MOS-FET 管在漏极和基底之间都有一个集成的二极管n-p 结。
如下图所示。
电平转换器的操作
在电平转换器的操作中要考虑下面的三种状态:
1、 没有器件下拉总线线路。
低电压部分的总线线路通过上拉电阻Rp 上拉至VDD1(3.3V) MOS-FET 管的门极和源极都是VDD1(3.3V), 所以它的VGS 低于阀值电压MOS-FET 管不导通这就允许高电压部分的总线线路通过它的上拉电阻Rp 拉到5V。 此时两部分的总线线路都是高电平只是电压电平不同。
2、一个3.3V 器件下拉总线线路到低电平。
MOS-FET 管的源极也变成低电平而门极是VDD1(3.3V)。VGS高于阀值,MOS-FET 管开始导通然后高电压部分的总线线路通过导通的MOS-FET管被VDD1(3.3V)器件下拉到低电平,此时两部分的总线线路都是低电平而且电压电平相同。
3、一个5V 的器件下拉总线线路到低电平。
MOS-FET 管的漏极基底、二极管低电压部分被下拉,直到VGS 超过阀值,MOS-FET 管开始导通,低电压部分的总线线路通过导通的MOS-FET管被5V 的器件进一步下拉到低电平,此时两部分的总线线路都是低电平而且电压电平相同。
这三种状态显示了逻辑电平在总线系统的两个方向上传输,与驱动的部分无关。状态1 执行了电平转
换功能,状态2和3按照I2C总线规范的要求在两部分的总线线路之间实现“线与”的功能。除了VDD1 (3.3V)
和VDD2 (5.0V)的电源电压外,还可以是例如2V VDD1 和10V VDD2 等的正常操作。其中VDD2必须等于或高于VDD1 。
但是值得注意的是,VDD1作为较低部分的电压,必须能够大于所选择的MOS-FET的阀值电压,也就是必须能够打开MOS-FET。此管参数必须谨慎选择。如下两种参数MOS-FET,在VDD1 (1.8V)到VDD2 (3.0V) 的电路中就可能存在截然不同的效果。
管1
管2
选择管1,由于VGS的范围是1.0~2.5V,很有可能出现大于1.8V的状况,因此VDD1方面传输低电平信号时,MOS-FET不能很完全的被打开,导致到VDD2 (3.0V)方面的信号不能彻底为低,出现半高状态。如下图:
择管2,由于VGS的范围是0.9~1.5V小于1.8V,因此,通路才会正常工作。
其他不同电压间的转换原理如上,请悉心选择器件。
在3.3V IIC总线中用到5V IIC器件,该电路已实验通过。

IIC双向电平转换电路设计的更多相关文章
- 一种简单实用的双向电平转换电路3.3V-5V
当你使用3.3V的单片机的时候,电平转换就在所难免了,经常会遇到3.3转5V或者5V转3.3V的情况,这里介绍一个简单的电路,他可以实现两个电平的相互转换(注意是相互哦,双向的,不是单向的!).电路十 ...
- 简单实用的双向电平转换电路(3.3v-5v)
当你使用3.3V的单片机的时候,电平转换就在所难免了,经常会遇到3.3转5V或者5V转3.3V的情况,这里介绍一个简单的电路,他可以实现两个电平的相互转换(注意是相互哦,双向的,不是单向的!).电路十 ...
- TTL和COMS电平匹配以及电平转换的方法
一.TTL TTL集成电路的主要型式为晶体管-晶体管逻辑门(transistor-transistor logic gate),TTL大部分都采用5V电源.1.输出高电平Uoh和输出低电平UolUoh ...
- 5V与3.3V器件电平转换
源:5V与3.3V器件电平转换 当你使用3.3V的单片机的时候,电平转换就在所难免了,经常会遇到3.3转5V或者5V转3.3V的情况,这里介绍一个简单的电路,他可以实现两个电平的相互转换(注意是相互哦 ...
- 一种电平转换的方法,使用CPLD
参考应用笔记 http://www.doc88.com/p-0197252336968.html 前言 在原理图设计初期,可能涉及到引脚电平的转换操作,比如主FPGA的某BANK电平为1.5V,但外围 ...
- Arduino 电平转换 升压 OUTPUT与9V/12V元件通信
原因 网络上有不少怎么让Arduino的5V电平转换成3.3V电平,从而和工作在3.3V下的芯片相互沟通的教程.但是如果想驱动高于5V电压的芯片,就找不到教程了.因此今天我来介绍一种方式,能让Ardu ...
- MSP430电平转换
说道到这个电平转换,写程序的时候居然还要示波器来观察现象,表示我们交的是211的学费,上的却不是211大学,创新实验室的仪器设备真的是少的可怜啊,我级不吐槽了说说这个电平转换的一些知识还有看法吧.. ...
- 单片机电平转换电路5V 3.3V串口通讯等(转)
源: 单片机电平转换电路5V 3.3V串口通讯等
- 5V系统和3.3V系统电平转换
在设计一个带MCU或者ARM系统电路时候,经常遇见MCU的VCC是3.3V,但是外围电路需要5V.有时候是反过来.虽然现在MCU的IO都声称支持TTL电平,但是我们谁也不想将MCU的IO口直接接上5V ...
随机推荐
- 集合类--最详细的面试宝典--看这篇就够用了(java 1.8)
看了一个星期源码,搜索上百篇博文,终于总结出了集合类的所有基础知识点,学集合,看这篇就够用了!!! 篇幅有点长, 如果你能全部理解,java最重要的集合就不怕了,秒过面试!!!(本篇素材来自网络,如有 ...
- linux -bash . startup.sh Permission denied
在执行./startup.sh,或者./shutdown.sh的时候,爆出了Permission denied, 其实很简单,就是今天在执行tomcat的时候,用户没有权限,而导致无法执行, 用命令c ...
- html的标签分类————body内标签系列
超链接标签 <a href="" target="_blank">text</a>,此类标签通常是超链接.其中href后面跟进的是超链接 ...
- Sublime Text3 安装 markdownediting插件 报错 Error loading syntax file "Packages/Markdown/Markdown.tmLanguage":
问题: Error loading syntax file "Packages/Markdown/Markdown.sublime-syntax": 解决方法: ./Data/Lo ...
- 【转载】Android RecyclerView 使用完全解析 体验艺术般的控件
崇拜下鸿洋大神,原文地址:http://blog.csdn.net/lmj623565791/article/details/45059587 概述 RecyclerView出现已经有一段时间了,相信 ...
- Python之SGDRegressor
实现: # -*- coding: UTF-8 -*- import numpy as npfrom sklearn.linear_model import SGDRegressor __author ...
- python包中__init__.py的作用
1.__init__.py定义包的属性和方法 一般为空文件,但是必须存在,没有__init__.py表明他所在的目录只是目录不是包 2.导入包的时候使用 例如有一个test目录,test下有xx1.p ...
- SQLServer数据集合的交、并、差集运算
SQLServer2005通过intersect,union,except和三个关键字对应交.并.差三种集合运算. 他们的对应关系可以参考下面图示 相关测试实例如下: use tempdb go if ...
- Centos7.5.1804永久生效修改主机名
原来主机名 [root@node1 ~]# 查看Centos的版本: [root@node1 ~]# cat /etc/redhat-release CentOS Linux release (Cor ...
- xunit-ICollectionFixture
https://github.com/dmetzgar/dotnetcoreinaction