CF1153F Serval and Bonus Problem

官方的解法是\(O(n ^ 2)\)的,这里给出一个\(O(n \log n)\)的做法。

首先对于长度为\(l\)的线段,显然它的答案就是长度为\(1\)的线段的答案\(\times l\),这样做只是为了方便计算。

考虑对于数轴上区间\([0,1]\)内任意一个点\(x\),它被一条随机线段覆盖的概率是多少:线段的两个端点都在它左边的概率是\(x ^ 2\)、都在它右边的概率是\((1 - x) ^ 2\),那么它被覆盖的概率即为\(p(x) = 1 - x^2 - (1 - x) ^ 2 = 2 x (1 - x)\)。

那么他被\(\ge k\)条线段覆盖的概率为\(f(x) = \sum \limits _{i = k} ^ n \binom{n}{i} p(x) ^ i (1 - p(x)) ^ {n - i}\)。

根据定积分的定义就得到区间\([0,1]\)内被\(\ge k\)条线段覆盖的长度期望为\(\int _{0} ^{1} f(x) \mathrm{d} x\)。

现在我们的问题就是怎么算这个东西了:

\[\begin{align*} \int _ 0 ^ 1 f(x) \mathrm{d} x & = \int _ 0 ^ 1 \sum \limits _{i = k} ^ n \binom {n} {i} (2x (1 - x)) ^ i (1 - 2x (1 - x)) ^ {n - i} \mathrm{d} x \\ & = \sum \limits _{i = k} ^ n \binom {n} {i} \int _ 0 ^ 1 (2x (1 - x)) ^ i \sum \limits _{j = 0} ^ {n - i} \binom {n - i} {j} (-2x(1 - x)) ^ j \mathrm{d} x \\ & = \sum \limits _{i = k} ^n \binom {n} {i} \sum \limits _{j = 0} ^ {n - i} \binom {n - i} {j} (-1) ^ j 2 ^ {(i + j)} \int _ 0 ^ 1 x ^ {i + j} (1 - x) ^ {i + j} \mathrm{d} x \end{align*}
\]

推到这里,就可以把积分去掉了,这是一个Beta Function的形式:记结论吧

\[B(x, y) = \int _ 0 ^ 1 t ^ {x - 1} (1 - t) ^ {y - 1} \mathrm{d} t = \frac {(x - 1) ! (y - 1) !} {(x + y - 1) !}
\]

代入得:

\[\begin{align*} \int _ 0 ^ 1 f(x) \mathrm{d} x & = \sum \limits _{i = k} ^n \binom {n} {i} \sum \limits _{j = 0} ^ {n - i} \binom {n - i} {j} (-1) ^ j 2 ^ {(i + j)} \frac {((i + j) ! ) ^ 2} {(2(i + j) + 1) !} \\ & = n ! \sum \limits _{i = k} ^ n \sum \limits _ {j = 0} ^ {n - i} \frac {1} {i !} \frac {(-1) ^ j} {j !} \frac {2 ^ {i + j} ((i + j) !) ^ 2} {(2(i+ j) + 1) ! (n - (i + j)) !} \end{align*}
\]

令\(t = i + j\),\(f[i] = \frac {1} {i}\),\(g[j] = \frac {(-1) ^ j} {j !}\),\(h[t] = \frac{2^t (t !) ^ 2} {(2 t + 1) ! (n - t) !}\),考虑枚举\(t\):

\[\begin{align*} \int _ 0 ^ 1 f(x) \mathrm{d} x & = n ! \sum \limits _{t = k} ^ n h[t] \sum \limits _ {i = k} ^ t f[i] g[t - i] \end{align*}
\]

这后面就是一个非常显然的卷积式子了,直接FFT即可。

答案记得\(\times l\)。

//written by newbiechd
#include <cstdio>
#include <cctype>
#include <algorithm>
#define BUF 1000000
using namespace std;
const int N = 100003, yyb = 998244353, Gg = 3, Gi = 332748118;
char buf[BUF], *p1, *p2;
inline char gc() { return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, BUF, stdin), p1 == p2) ? EOF : *p1++; }
inline int rd() {
register int f = 0;
register char c;
while (!isdigit(c = gc())) {}
do
f = f * 10 + (c ^ 48);
while (isdigit(c = gc()));
return f;
}
int rev[N], G[2][N];
inline int power(int x, int y) {
register int o = 1;
for (; y; y >>= 1, x = 1ll * x * x % yyb)
if (y & 1)
o = 1ll * o * x % yyb;
return o;
}
inline void ntt(int *f, int len, int opt) {
register int i, j, k, x, y, p, q;
for (i = 1; i < len; ++i)
if (i < rev[i])
swap(f[i], f[rev[i]]);
for (i = 1; i < len; i <<= 1) {
p = G[opt][i];
for (j = 0; j < len; j += i << 1)
for (k = 0, q = 1; k < i; ++k, q = 1ll * p * q % yyb)
x = f[j | k], y = 1ll * q * f[i | j | k] % yyb, f[j | k] = (x + y) % yyb, f[i | j | k] = (x - y) % yyb;
}
}
int fac[N], invFac[N], f[N], g[N], h[N];
int main() {
#ifndef ONLINE_JUDGE
freopen("a.in", "r", stdin);
freopen("a.out", "w", stdout);
#endif
int n = rd(), m = n << 1 | 1, k = rd(), l = rd(), i, len, tmp, ans = 0;
fac[0] = 1;
for (i = 1; i <= m; ++i)
fac[i] = 1ll * fac[i - 1] * i % yyb;
invFac[m] = power(fac[m], yyb - 2);
for (i = m; i; --i)
invFac[i - 1] = 1ll * invFac[i] * i % yyb;
for (i = k; i <= n; ++i)
f[i] = invFac[i];
for (i = 0; i <= n; ++i)
g[i] = i & 1 ? yyb - invFac[i] : invFac[i];
for (len = 1; len <= m; len <<= 1) {}
for (i = 1; i < len; ++i)
rev[i] = (rev[i >> 1] >> 1) | (i & 1 ? len >> 1 : 0);
for (i = 1; i < len; i <<= 1)
G[0][i] = power(Gg, (yyb - 1) / (i << 1)), G[1][i] = power(Gi, (yyb - 1) / (i << 1));
ntt(f, len, 0), ntt(g, len, 0);
for (i = 0; i < len; ++i)
f[i] = 1ll * f[i] * g[i] % yyb;
ntt(f, len, 1), tmp = power(len, yyb - 2);
for (i = 1; i <= n; ++i)
f[i] = 1ll * f[i] * tmp % yyb;
for (i = 1, tmp = 2; i <= n; tmp = (tmp << 1) % yyb, ++i)
h[i] = 1ll * fac[i] * fac[i] % yyb * tmp % yyb * invFac[i << 1 | 1] % yyb * invFac[n - i] % yyb;
for (i = k; i <= n; ++i)
ans = (1ll * f[i] * h[i] % yyb + ans) % yyb;
ans = 1ll * ans * fac[n] % yyb * l % yyb, printf("%d\n", (ans + yyb) % yyb);
return 0;
}

CF1153F Serval and Bonus Problem FFT的更多相关文章

  1. CF1153F Serval and Bonus Problem

    Serval and Bonus Problem 1.转化为l=1,最后乘上l 2.对于一个方案,就是随便选择一个点,选在合法区间内的概率 3.对于本质相同的所有方案考虑在一起,贡献就是合法区间个数/ ...

  2. CF1153F Serval and Bonus Problem 【期望】

    题目链接:洛谷 作为一只沉迷数学多年的蒟蒻OIer,在推柿子和dp之间肯定要选推柿子的! 首先假设线段长度为1,最后答案乘上$l$即可. 对于$x$这个位置,被区间覆盖的概率是$2x(1-x)$(线段 ...

  3. Codeforces Round #551 (Div. 2) F. Serval and Bonus Problem (DP/FFT)

    yyb大佬的博客 这线段期望好神啊... 还有O(nlogn)FFTO(nlogn)FFTO(nlogn)FFT的做法 Freopen大佬的博客 本蒟蒻只会O(n2)O(n^2)O(n2) CODE ...

  4. Codeforces1153F Serval and Bonus Problem 【组合数】

    题目分析: 我们思考正好被k个区间覆盖的情况,那么当前这个子段是不是把所有的点分成了两个部分,那么在两个部分之间相互连k条线,再对于剩下的分别连线就很好了?这个东西不难用组合数写出来. 然后我们要证明 ...

  5. CF1153 F. Serval and Bonus Problem(dp)

    题意 一个长为 \(l\) 的线段,每次等概率选择线段上两个点,共选出 \(n\) 条线段,求至少被 \(k\) 条线段覆盖的长度期望. 数据范围 \(1 \le k \le n \le 2000, ...

  6. Codeforces 1153F Serval and Bonus Problem [积分,期望]

    Codeforces 思路 去他的DP,暴力积分多好-- 首先发现\(l\)没有用,所以不管它. 然后考虑期望的线性性,可以知道答案就是 \[ \int_0^1 \left[ \sum_{i=k}^n ...

  7. @codeforces - 1153F@ Serval and Bonus Problem

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 从一条长度为 l 的线段中随机选择 n 条线段,共 2*n 个线 ...

  8. 2016 acm香港网络赛 A题. A+B Problem (FFT)

    原题地址:https://open.kattis.com/problems/aplusb FFT代码参考kuangbin的博客:http://www.cnblogs.com/kuangbin/arch ...

  9. XJTUOJ wmq的A×B Problem FFT/NTT

    wmq的A×B Problem 发布时间: 2017年4月9日 17:06   最后更新: 2017年4月9日 17:07   时间限制: 3000ms   内存限制: 512M 描述 这是一个非常简 ...

随机推荐

  1. sql server自定义函数学习笔记

    sql server中函数分别有:表值函数.标量函数.聚合函数.系统函数.这些函数中除系统函数外其他函数都需要用户进行自定义. 一.表值函数 简单表值函数 创建 create function fu_ ...

  2. Fedora 29 查看 rpm 包 依赖性 以 libconfig 为例

    查看依赖性方法:# rpmrepater会向用户显示已安装包的列表,你可以使用上/下箭头来滚动屏幕# 可以在指定包上使用"r"键来显示其依赖关系,循环在指定包上按下"r& ...

  3. (一)helloworld

    欢迎来到windows编程的世界,先给我们的windows打个招呼吧: #include <Windows.h> #include <iostream> using names ...

  4. 使用if语句时应注意的问题(初学者)

    (1)在三种形式的if语句中,在if关键字之后均为表达式.该表达式通常是逻辑表达式或关系表达式,但也可以是其他表达式,如赋值表达式等,甚至也可以是一个变量. 例:if(a=5)语句: if(b)语句: ...

  5. Mac显示器不亮

    上班的时候mac连接上显示器,但是显示器并没有亮,于是乎各种插拔ing...偶尔一两次还可以接受,但是天天这样小身板招架不住呀,于是乎终于找到一个可以让显示器快速亮起的方法,遂赶紧分享给各位小火鸡~ ...

  6. 17秋 软件工程 团队第五次作业 Alpha Scrum11

    17秋 软件工程 团队第五次作业 Alpha Scrum11 今日完成的任务 世强:管理员头像图片上传和显示逻辑处理,活动添加及上传图片: 港晨:完成Web界面前后端对接: 树民:标准化后端接口格式: ...

  7. 1024. Video Stitching

    //使用java dfs public int videoStitching(int[][] clips, int T) { //bfs Queue<Integer> queue = ne ...

  8. linux位数查看

    #getconf LONG_BIT

  9. Flex布局新写法兼容写法详解

    很久之前用过flex,但是没有考虑过兼容性问题,为了兼容ios一定要加上-webkit前缀: ul{ display: flex; /* 新版本语法: Opera 12.1, Firefox 22+ ...

  10. Codeforces Round #524 (Div. 2) C. Masha and two friends 几何:判断矩形是否相交以及相交矩形坐标

    题意 :给出一个初始的黑白相间的棋盘  有两个人  第一个人先用白色染一块矩形区域 第二个人再用黑色染一块矩形区域 问最后黑白格子各有多少个 思路:这题的关键在于求相交的矩形区间 给出一个矩形的左下和 ...