CF1153F Serval and Bonus Problem

官方的解法是\(O(n ^ 2)\)的,这里给出一个\(O(n \log n)\)的做法。

首先对于长度为\(l\)的线段,显然它的答案就是长度为\(1\)的线段的答案\(\times l\),这样做只是为了方便计算。

考虑对于数轴上区间\([0,1]\)内任意一个点\(x\),它被一条随机线段覆盖的概率是多少:线段的两个端点都在它左边的概率是\(x ^ 2\)、都在它右边的概率是\((1 - x) ^ 2\),那么它被覆盖的概率即为\(p(x) = 1 - x^2 - (1 - x) ^ 2 = 2 x (1 - x)\)。

那么他被\(\ge k\)条线段覆盖的概率为\(f(x) = \sum \limits _{i = k} ^ n \binom{n}{i} p(x) ^ i (1 - p(x)) ^ {n - i}\)。

根据定积分的定义就得到区间\([0,1]\)内被\(\ge k\)条线段覆盖的长度期望为\(\int _{0} ^{1} f(x) \mathrm{d} x\)。

现在我们的问题就是怎么算这个东西了:

\[\begin{align*} \int _ 0 ^ 1 f(x) \mathrm{d} x & = \int _ 0 ^ 1 \sum \limits _{i = k} ^ n \binom {n} {i} (2x (1 - x)) ^ i (1 - 2x (1 - x)) ^ {n - i} \mathrm{d} x \\ & = \sum \limits _{i = k} ^ n \binom {n} {i} \int _ 0 ^ 1 (2x (1 - x)) ^ i \sum \limits _{j = 0} ^ {n - i} \binom {n - i} {j} (-2x(1 - x)) ^ j \mathrm{d} x \\ & = \sum \limits _{i = k} ^n \binom {n} {i} \sum \limits _{j = 0} ^ {n - i} \binom {n - i} {j} (-1) ^ j 2 ^ {(i + j)} \int _ 0 ^ 1 x ^ {i + j} (1 - x) ^ {i + j} \mathrm{d} x \end{align*}
\]

推到这里,就可以把积分去掉了,这是一个Beta Function的形式:记结论吧

\[B(x, y) = \int _ 0 ^ 1 t ^ {x - 1} (1 - t) ^ {y - 1} \mathrm{d} t = \frac {(x - 1) ! (y - 1) !} {(x + y - 1) !}
\]

代入得:

\[\begin{align*} \int _ 0 ^ 1 f(x) \mathrm{d} x & = \sum \limits _{i = k} ^n \binom {n} {i} \sum \limits _{j = 0} ^ {n - i} \binom {n - i} {j} (-1) ^ j 2 ^ {(i + j)} \frac {((i + j) ! ) ^ 2} {(2(i + j) + 1) !} \\ & = n ! \sum \limits _{i = k} ^ n \sum \limits _ {j = 0} ^ {n - i} \frac {1} {i !} \frac {(-1) ^ j} {j !} \frac {2 ^ {i + j} ((i + j) !) ^ 2} {(2(i+ j) + 1) ! (n - (i + j)) !} \end{align*}
\]

令\(t = i + j\),\(f[i] = \frac {1} {i}\),\(g[j] = \frac {(-1) ^ j} {j !}\),\(h[t] = \frac{2^t (t !) ^ 2} {(2 t + 1) ! (n - t) !}\),考虑枚举\(t\):

\[\begin{align*} \int _ 0 ^ 1 f(x) \mathrm{d} x & = n ! \sum \limits _{t = k} ^ n h[t] \sum \limits _ {i = k} ^ t f[i] g[t - i] \end{align*}
\]

这后面就是一个非常显然的卷积式子了,直接FFT即可。

答案记得\(\times l\)。

//written by newbiechd
#include <cstdio>
#include <cctype>
#include <algorithm>
#define BUF 1000000
using namespace std;
const int N = 100003, yyb = 998244353, Gg = 3, Gi = 332748118;
char buf[BUF], *p1, *p2;
inline char gc() { return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, BUF, stdin), p1 == p2) ? EOF : *p1++; }
inline int rd() {
register int f = 0;
register char c;
while (!isdigit(c = gc())) {}
do
f = f * 10 + (c ^ 48);
while (isdigit(c = gc()));
return f;
}
int rev[N], G[2][N];
inline int power(int x, int y) {
register int o = 1;
for (; y; y >>= 1, x = 1ll * x * x % yyb)
if (y & 1)
o = 1ll * o * x % yyb;
return o;
}
inline void ntt(int *f, int len, int opt) {
register int i, j, k, x, y, p, q;
for (i = 1; i < len; ++i)
if (i < rev[i])
swap(f[i], f[rev[i]]);
for (i = 1; i < len; i <<= 1) {
p = G[opt][i];
for (j = 0; j < len; j += i << 1)
for (k = 0, q = 1; k < i; ++k, q = 1ll * p * q % yyb)
x = f[j | k], y = 1ll * q * f[i | j | k] % yyb, f[j | k] = (x + y) % yyb, f[i | j | k] = (x - y) % yyb;
}
}
int fac[N], invFac[N], f[N], g[N], h[N];
int main() {
#ifndef ONLINE_JUDGE
freopen("a.in", "r", stdin);
freopen("a.out", "w", stdout);
#endif
int n = rd(), m = n << 1 | 1, k = rd(), l = rd(), i, len, tmp, ans = 0;
fac[0] = 1;
for (i = 1; i <= m; ++i)
fac[i] = 1ll * fac[i - 1] * i % yyb;
invFac[m] = power(fac[m], yyb - 2);
for (i = m; i; --i)
invFac[i - 1] = 1ll * invFac[i] * i % yyb;
for (i = k; i <= n; ++i)
f[i] = invFac[i];
for (i = 0; i <= n; ++i)
g[i] = i & 1 ? yyb - invFac[i] : invFac[i];
for (len = 1; len <= m; len <<= 1) {}
for (i = 1; i < len; ++i)
rev[i] = (rev[i >> 1] >> 1) | (i & 1 ? len >> 1 : 0);
for (i = 1; i < len; i <<= 1)
G[0][i] = power(Gg, (yyb - 1) / (i << 1)), G[1][i] = power(Gi, (yyb - 1) / (i << 1));
ntt(f, len, 0), ntt(g, len, 0);
for (i = 0; i < len; ++i)
f[i] = 1ll * f[i] * g[i] % yyb;
ntt(f, len, 1), tmp = power(len, yyb - 2);
for (i = 1; i <= n; ++i)
f[i] = 1ll * f[i] * tmp % yyb;
for (i = 1, tmp = 2; i <= n; tmp = (tmp << 1) % yyb, ++i)
h[i] = 1ll * fac[i] * fac[i] % yyb * tmp % yyb * invFac[i << 1 | 1] % yyb * invFac[n - i] % yyb;
for (i = k; i <= n; ++i)
ans = (1ll * f[i] * h[i] % yyb + ans) % yyb;
ans = 1ll * ans * fac[n] % yyb * l % yyb, printf("%d\n", (ans + yyb) % yyb);
return 0;
}

CF1153F Serval and Bonus Problem FFT的更多相关文章

  1. CF1153F Serval and Bonus Problem

    Serval and Bonus Problem 1.转化为l=1,最后乘上l 2.对于一个方案,就是随便选择一个点,选在合法区间内的概率 3.对于本质相同的所有方案考虑在一起,贡献就是合法区间个数/ ...

  2. CF1153F Serval and Bonus Problem 【期望】

    题目链接:洛谷 作为一只沉迷数学多年的蒟蒻OIer,在推柿子和dp之间肯定要选推柿子的! 首先假设线段长度为1,最后答案乘上$l$即可. 对于$x$这个位置,被区间覆盖的概率是$2x(1-x)$(线段 ...

  3. Codeforces Round #551 (Div. 2) F. Serval and Bonus Problem (DP/FFT)

    yyb大佬的博客 这线段期望好神啊... 还有O(nlogn)FFTO(nlogn)FFTO(nlogn)FFT的做法 Freopen大佬的博客 本蒟蒻只会O(n2)O(n^2)O(n2) CODE ...

  4. Codeforces1153F Serval and Bonus Problem 【组合数】

    题目分析: 我们思考正好被k个区间覆盖的情况,那么当前这个子段是不是把所有的点分成了两个部分,那么在两个部分之间相互连k条线,再对于剩下的分别连线就很好了?这个东西不难用组合数写出来. 然后我们要证明 ...

  5. CF1153 F. Serval and Bonus Problem(dp)

    题意 一个长为 \(l\) 的线段,每次等概率选择线段上两个点,共选出 \(n\) 条线段,求至少被 \(k\) 条线段覆盖的长度期望. 数据范围 \(1 \le k \le n \le 2000, ...

  6. Codeforces 1153F Serval and Bonus Problem [积分,期望]

    Codeforces 思路 去他的DP,暴力积分多好-- 首先发现\(l\)没有用,所以不管它. 然后考虑期望的线性性,可以知道答案就是 \[ \int_0^1 \left[ \sum_{i=k}^n ...

  7. @codeforces - 1153F@ Serval and Bonus Problem

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 从一条长度为 l 的线段中随机选择 n 条线段,共 2*n 个线 ...

  8. 2016 acm香港网络赛 A题. A+B Problem (FFT)

    原题地址:https://open.kattis.com/problems/aplusb FFT代码参考kuangbin的博客:http://www.cnblogs.com/kuangbin/arch ...

  9. XJTUOJ wmq的A×B Problem FFT/NTT

    wmq的A×B Problem 发布时间: 2017年4月9日 17:06   最后更新: 2017年4月9日 17:07   时间限制: 3000ms   内存限制: 512M 描述 这是一个非常简 ...

随机推荐

  1. Python之随机森林实战

    代码实现: # -*- coding: utf-8 -*- """ Created on Tue Sep 4 09:38:57 2018 @author: zhen &q ...

  2. python第五十四天--第十周作业

    SELECT版FTP:使用SELECT或SELECTORS模块实现并发简单版FTP允许多用户并发上传下载文件 必须使用select or selectors模块支持多并发,禁止使用多线程或多进程 RE ...

  3. python第三十六天-----类中的特殊成员方法

    __doc__ 查看尖的描述信息 __module__表示当前操作的对象所在的模块 __class__表示当前操作的对象所属的类 __init__构造方法 通过类创建对象自动执行 __del__析构方 ...

  4. oracle启动的三个阶段

    startup nomount 时,数据库状态为 started; alter database mount 时, 状态为 mounted; alter database open 时,状态为 ope ...

  5. [HDFS_add_2] SecondaryNameNode 滚动 NameNode 数据流程

    0. 说明 在 将 SecondaryNameNode 配置到 s105 节点上 的基础上进行 SecondaryNameNode 滚动 NameNode 数据流程 分析 1. SecondaryNa ...

  6. eclipse中的tomcat配置

    打开Eclipse,单击“window”菜单,选择下方的“Preferences”:   找到Server下方的Runtime Environment,单击右方的Add按钮:   选择已经成功安装的T ...

  7. awk实战演示

    awk:报告生成器,格式化文本输出. 我们一般使用的awk命令其实就是gawk,在centos7系统下,awk是gawk的链接文件. 基本用法:gawk [options] 'program'  FI ...

  8. Python实现Excel转换工具小结

    经历过的打表工具从c++.C#,再到Python,算下来还是Python方便些.一天即可上手开发,非常适合快速迭代中的各种小工具开发. Python开源的第三方库很多,涉及excel方面的也有好几个x ...

  9. sql server2008 R2打开报错:无法识别的配置节 system.serviceModel解决办法分享

    本人是先安装的sql server2008 R2成功可以运行后,再安装VS2010成功后,再打开sql server2008,就出现以下错误,无法连接服务器.   无法识别的配置节 system.se ...

  10. CSS3渐变——线性渐变

    渐变背景一直以来在Web页面中都是一种常见的视觉元素.但一直以来,Web设计师都是通过图形软件设计这些渐变效果,然后以图片形式或者背景图片的形式运用到页面中.Web页面上实现的效果,仅从页面的视觉效果 ...