• 首先每个学校的边界范围是\(1e9\),肯定不能直接\(dp[i][j]\)表示前i所学校,第\(i\)所学校派出\(j\)艘船,但\(b<=500\)所有考虑把\(a,b\)离散,第二维改为当前这个学校派出数量在那个区间里
  • 转移的时候,如果前面所有的学校都不在此区间内,那贡献为\(\sum_{i'=1}^{i}\sum_{j'=1}^{j}dp[i'][j']\)
  • 但是如果有学校要选在该区间内,问题便转化为在一段长度为len的区间内选出k个数,使他们递增,当然,有些数是可以不选的,该方案数为\(\sum_{i=0}^{k}C(k,k-i)*C(len,i)\),这个东西看起来一点都不好算,我们把这个式子化为\(C(len+k,k)\)
  • 所以如果现在是第i个学校到第k个学校在此范围内,并且i,k学校强制选择,则方案数为\(C(i-k-1+len,i-k-1)\),贡献为\(\sum_{i'=i-1}^{1}C(len+i-i'-1,i-i'-1)\sum_{k=1}^{i'-1}\sum_{j'=1}^{j-1}dp[k][j']\)其中&j&是当前枚举的区间
  • 对于每一段区间,\(len\)相同,所以我们在枚举区间是处理一下组合数,后面的两重循环用前缀和处理一下,时间复杂度\(O(n^3)\)
#include<bits/stdc++.h>
using namespace std;
typedef int sign;
typedef long long ll;
#define For(i,a,b) for(register sign i=(sign)a;i<=(sign)b;++i)
#define Fordown(i,a,b) for(register sign i=(sign)a;i>=(sign)b;--i)
const int N=500+5;
bool cmax(sign &a,sign b){return (a<b)?a=b,1:0;}
bool cmin(sign &a,sign b){return (a>b)?a=b,1:0;}
template<typename T>T read()
{
T ans=0,f=1;
char ch=getchar();
while(!isdigit(ch)&&ch!='-')ch=getchar();
if(ch=='-')f=-1,ch=getchar();
while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch-'0'),ch=getchar();
return ans*f;
}
template<typename T>void write(T x,char y)
{
if(x==0)
{
putchar('0');putchar(y);
return;
}
if(x<0)
{
putchar('-');
x=-x;
}
static char wr[20];
int top=0;
for(;x;x/=10)wr[++top]=x%10+'0';
while(top)putchar(wr[top--]);
putchar(y);
}
void file()
{
#ifndef ONLINE_JUDGE
freopen("3643.in","r",stdin);
freopen("3643.out","w",stdout);
#endif
}
int n,a[N],b[N],l[N<<1],tot;
void input()
{
n=read<int>();
For(i,1,n)
{
a[i]=read<int>(),b[i]=read<int>();
l[++tot]=a[i],l[++tot]=b[i]+1;
}
}
void init()
{
sort(l+1,l+tot+1);
tot=unique(l+1,l+tot+1)-l-1;
For(i,1,n)
{
a[i]=lower_bound(l+1,l+tot+1,a[i])-l;
b[i]=lower_bound(l+1,l+tot+1,b[i]+1)-l;
}
}
const int mo=1e9+7;
int inv[N],dp[N],C[N];
void work()
{
int len;
inv[1]=1;For(i,2,n)inv[i]=1ll*(mo-mo/i)*inv[mo%i]%mo;
C[0]=dp[0]=1;
For(i,1,tot-1)
{
len=l[i+1]-l[i];
For(i,1,n)C[i]=1ll*C[i-1]*(len+i-1)%mo*inv[i]%mo;
Fordown(j,n,1)if(a[j]<=i&&i+1<=b[j])
{
int f=0,pos=1,c=len;
Fordown(k,j-1,0)
{
(f+=1ll*dp[k]*c%mo)%=mo;
if(a[k]<=i&&i+1<=b[k])c=C[++pos];
}
(dp[j]+=f)%=mo;
}
}
int ans=0;
For(i,1,n)(ans+=dp[i])%=mo;
write(ans,'\n');
}
int main()
{
file();
input();
init();
work();
return 0;
}

APIO2016赛艇的更多相关文章

  1. BZOJ 4584 luogu P3643: [Apio2016]赛艇

    4584: [Apio2016]赛艇 Time Limit: 70 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 在首尔 ...

  2. 【BZOJ4584】[Apio2016]赛艇 DP

    [BZOJ4584][Apio2016]赛艇 Description 在首尔城中,汉江横贯东西.在汉江的北岸,从西向东星星点点地分布着个划艇学校,编号依次为到.每个学校都拥有若干艘划艇.同一所学校的所 ...

  3. bzoj 4584: [Apio2016]赛艇【dp】

    参考:https://www.cnblogs.com/lcf-2000/p/6809085.html 设f[i][j][k]为第i个学校派出的赛艇数量在区间j内,并且区间j内共有k个学校的方案数 把数 ...

  4. BZOJ4584 : [Apio2016]赛艇

    首先将值域离散化成$O(n)$个连续段. 设$f[i][j][k]$表示第$i$个学校派出的数量在第$j$个连续段,在第$j$个连续段一共有$k$个学校的方案数.用组合数以及前缀和转移即可. 时间复杂 ...

  5. BZOJ4584 APIO2016赛艇(动态规划+组合数学)

    如果值域不大,容易想到设f[i][j]为第i个学校选了j的方案数,枚举上一个学校是哪个选了啥即可,可以前缀和优化.于是考虑离散化,由于离散化后相同的数可能可以取不同的值,所以枚举第一个和其所选数(离散 ...

  6. BZOJ 4584 [Apio2016]赛艇 ——动态规划

    Subtask 1 直接$N^2$ $DP$,就可以了 Subtask 2 用$f[i][j]$表示当前位置为$i$,结束元素为$j$的方案数. Subtask 3 看下面 Subtask 4 首先可 ...

  7. 校际联合Contest

    每次开一个坑都像是重新被碾压的预感 最近的新闻,以前很喜欢乔任梁的<复活>...然后他就死了...感觉我再多愁善感一点的话...就要悲伤逆流成河了吧... Contest 09/24(乐滋 ...

  8. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  9. 2017FJ省队集训 游记

    2017FJ省队集训 游记 又是一篇流水账 Day 1 今天是省队集训的第一天.早上骑车去八中,到的时候汗流太多浑身湿透被杨哥哥和runzhe2000 d了,一个说我去游泳了一个说我打球了...流完汗 ...

随机推荐

  1. Luogu2178 NOI2015 品酒大会 SA、并查集

    传送门 感觉题目讲的很不清楚-- 题目意思就是给出一个长度为\(n\)的字符串,求对于\(r=0,1,...,n-1\),求出\(LCP(suffix_p,suffix_q) \geq r\)的无序数 ...

  2. 基于uFUN开发板的心率计(一)DMA方式获取传感器数据

    前言 从3月8号收到板子,到今天算起来,uFUN到手也有两周的时间了,最近利用下班后的时间,做了个心率计,从单片机程序到上位机开发,到现在为止完成的差不多了,实现很简单,uFUN开发板外加一个Puls ...

  3. 1kb的前端HTML模板解析引擎,不限于嵌套、循环、函数你能想到的解析方式

    传送门:https://github.com/xiangyuecn/BuildHTML copy之前说点什么 html做点小功能(什么都没有),如果是要手动生成html这种操作,容易把代码搞得乱七八糟 ...

  4. Mybatis中 collection 和 association 的区别?

    public class A{ private B b1; private List<B> b2;} 在映射b1属性时用association标签,(一对一的关系) 映射b2时用colle ...

  5. TRIO-basic指令--MOVEMODIFY

    Syntax: MOVEMODIFY(position) Parameters: position: Absolute position for the current move to complet ...

  6. cf946d 怎样逃最多的课dp

    来源:codeforces                                              D. Timetable Ivan is a student at Berland ...

  7. M2阶段事后总结

    设想和目标 1. 我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述?我们的主要任务是将35w+个符合条件的网页,问答,文章放入数据库:爬取功能定义为以下几种:通用型爬取 ...

  8. 个人作业Week3

    个人作业week3 一.  调研,评测 1.我的使用体验 版本:IOS版   BUG_1: 点击单词本中的“同步”后,会提示登录Microsoft账户.登录成功立即开始同步单词本.在单词本同步过程中, ...

  9. Linux内核分析 笔记五 扒开系统调用的三层皮(下) ——by王玥

    (一)给MenuOs增加time和time-asm命令 更新menu代码到最新版 在main函数中增加MenuConfig 增加对应的Ttime和TimeAsm函数 make rootfs (二)使用 ...

  10. 《Linux内核分析》第七周: 可执行程序的装载

    LINUX内核分析第七周学习总结--可执行程序的装载 杨舒雯(原创作品转载请注明出处) <Linux内核分析>MOOC课程http://mooc.study.163.com/course/ ...