经过部分分的提示,我们可以把一条路径切成s到lca 和lca到t的链

这样就分为向上的链和向下的链,我们分开考虑:

向上:如果某一个链i可以对点x产生贡献,那么有deep[x]+w[x]=deep[S[i]],而且S[i]和lca[i]都在x的子树中

向下:如果某一个链i可以对点x产生贡献,那么有deep[x]-w[x]=deep[T[i]]-L[i],而且T[i]和lca[i]都在x的子树中,其中L[i]表示对应的路径的长度,即L[i]=deep[T[i]]+deep[S[i]]-2*deep[lca[i]]

这样的话,我们可以把deep[S[i]]和deep[T[i]]-L[i]在合适的时候放到对应的桶里,然后在合适的时候查桶里的值作为答案

具体来说,dfs一下,找到S(或T)的时候给对应的桶++,找到lca的时候给对应的桶--,在子树都做完以后统计答案

但只是这样的话,对于某些点,会出现某些链,lca在它的祖先上,但端点却在它的祖先的另一颗子树中,也就是会被这个点查到

我们只要在进入这个点的时候记下来进入时候对应的桶中的结果,再在回来的时候用现在的减掉刚才记下来的,就是答案,因为这样减出来的一定是在他子树里的

注意由于偷懒,lca实际上在这两个链里都算了一遍,如果lca会被它这个点统计到的话,需要减下去一次贡献

据说有差分的思想?我太菜了看不出来...

 #include<bits/stdc++.h>
#define pa pair<int,int>
#define lowb(x) ((x)&(-(x)))
#define REP(i,n0,n) for(i=n0;i<=n;i++)
#define PER(i,n0,n) for(i=n;i>=n0;i--)
#define MAX(a,b) ((a>b)?a:b)
#define MIN(a,b) ((a<b)?a:b)
#define CLR(a,x) memset(a,x,sizeof(a))
#define rei register int
using namespace std;
typedef long long ll;
const int maxn=3e5+; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} struct Edge{
int a,b,ne;
}eg[maxn*];
int egh[maxn],ect;
int N,M,w[maxn],s[maxn],t[maxn];
int dep[maxn],lca[maxn],len[maxn],bfa[maxn];
int fa[maxn],que[maxn*][],qh[maxn];
int cntu[maxn],cntd[maxn*],ans[maxn];
int sid[maxn],sh[maxn],tid[maxn],th[maxn],lid[maxn],lh[maxn];
bool flag[maxn]; inline void adeg(int a,int b){
eg[++ect].a=a;eg[ect].b=b;eg[ect].ne=egh[a];egh[a]=ect;
}
inline int getf(int x){return x==bfa[x]?x:bfa[x]=getf(bfa[x]);} void dfs(int x){
flag[x]=;
for(int i=egh[x];i;i=eg[i].ne){
int b=eg[i].b;
if(flag[b]) continue;
dep[b]=dep[x]+;fa[b]=x;
dfs(b);
bfa[getf(b)]=getf(x);
}
for(int i=qh[x];i;i=que[i][]){
if(flag[que[i][]]) lca[i>>]=getf(que[i][]);
}
} void solve(int x,int f){
int su=cntu[dep[x]+w[x]],sd=cntd[dep[x]-w[x]+N];
for(int i=sh[x];i;i=sid[i]){
cntu[dep[s[i]]]++;
}for(int i=th[x];i;i=tid[i]){
cntd[dep[t[i]]-len[i]+N]++;
}
for(int i=egh[x];i;i=eg[i].ne){
int b=eg[i].b;
if(b==f) continue;
solve(b,x);
}
ans[x]=cntu[dep[x]+w[x]]+cntd[dep[x]-w[x]+N]-su-sd;
for(int i=lh[x];i;i=lid[i]){
cntu[dep[s[i]]]--;
cntd[dep[t[i]]-len[i]+N]--;
if(w[x]==dep[s[i]]-dep[lca[i]]) ans[x]--;
}
} int main(){
int i,j,k;
N=rd(),M=rd();
for(i=;i<N;i++){
int a=rd(),b=rd();
adeg(a,b);adeg(b,a);
}
for(i=;i<=N;i++) w[i]=rd();
for(i=;i<=M;i++){
s[i]=rd(),t[i]=rd();
que[i<<][]=s[i],que[i<<|][]=t[i];
que[i<<][]=qh[t[i]],que[i<<|][]=qh[s[i]];
qh[t[i]]=i<<,qh[s[i]]=i<<|;
}
for(i=;i<=N;i++) bfa[i]=i;
dfs();
for(i=;i<=M;i++){ sid[i]=sh[s[i]];sh[s[i]]=i;
tid[i]=th[t[i]];th[t[i]]=i;
lid[i]=lh[lca[i]];lh[lca[i]]=i;
len[i]=dep[t[i]]+dep[s[i]]-*dep[lca[i]];
}
solve(,);
for(i=;i<=N;i++) printf("%d ",ans[i]);
return ;
}

luogu1600 [NOIp2016]天天爱跑步 (tarjanLca+dfs)的更多相关文章

  1. [Noip2016]天天爱跑步 LCA+DFS

    [Noip2016]天天爱跑步 Description 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.?天天爱跑步?是一个养成类游戏,需要玩家每天按时上线,完成打卡任 ...

  2. [luogu1600 noip2016] 天天爱跑步 (树上差分)

    题目描述 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.<天天爱跑步>是一个养成类游戏,需要玩家每天按时上线,完成打卡任务. 这个游戏的地图可以看作一一棵 ...

  3. [NOIP2016] 天天爱跑步 桶 + DFS

    ---题面--- 题解: 很久以前就想写了,一直没敢做,,,不过今天写完没怎么调就过了还是很开心的. 首先我们观察到跑步的人数是很多的,要一条一条的遍历显然是无法承受的,因此我们要考虑更加优美的方法. ...

  4. [NOIp2016]天天爱跑步 线段树合并

    [NOIp2016]天天爱跑步 LG传送门 作为一道被毒瘤出题人们玩坏了的NOIp经典题,我们先不看毒瘤的"动态爱跑步"和"天天爱仙人掌",回归一下本来的味道. ...

  5. 【LG1600】[NOIP2016]天天爱跑步

    [LG1600][NOIP2016]天天爱跑步 题面 洛谷 题解 考虑一条路径\(S\rightarrow T\)是如何给一个观测点\(x\)造成贡献的, 一种是从\(x\)的子树内出来,另外一种是从 ...

  6. NOIP2016天天爱跑步 题解报告【lca+树上统计(桶)】

    题目描述 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.«天天爱跑步»是一个养成类游戏,需要玩家每天按时上线,完成打卡任务. 这个游戏的地图可以看作一一棵包含 nn个 ...

  7. BZOJ4719 [Noip2016]天天爱跑步

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  8. noip2016天天爱跑步

    题目描述 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.«天天爱跑步»是一个养成类游戏,需要玩家每天按时上线,完成打卡任务. 这个游戏的地图可以看作一一棵包含 个结点 ...

  9. NOIP2016 天天爱跑步 80分暴力

    https://www.luogu.org/problem/show?pid=1600 题目描述 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.«天天爱跑步»是一个养 ...

随机推荐

  1. 如何写好一篇高质量的IEEE/ACM Transaction级别的计算机科学论文?

    转自<知乎>如何写好一篇高质量的IEEE/ACM Transaction级别的计算机科学论文? 问题: 作为一个博士生,一直为写论文头疼,读过很多高质量论文,觉得写的真好,但是轮到自己写总 ...

  2. BugkuCTF 矛盾

    前言 写了这么久的web题,算是把它基础部分都刷完了一遍,以下的几天将持续更新BugkuCTF WEB部分的题解,为了不影响阅读,所以每道题的题解都以单独一篇文章的形式发表,感谢大家一直以来的支持和理 ...

  3. linux下安装redis组件报错-gcc报错

    报错如图: 1.解决办法    先安装gcc插件.删除redis解压后文件.重新解压

  4. SpringBoot笔记--Jackson

    SpringUtil.getBean<GenericConversionService>().addConverter(Date2LocalDateTimeConverter()) var ...

  5. vue-cli中的check-versions.js配置文件包括semver,chalk,shell插件的解释

    本文介绍vue-cli脚手架build目录中check-versions.js的配置 本文件是用来检测node和npm版本的 直接上代码加注释 // 下面的插件是chalk插件,他的作用是在控制台中输 ...

  6. 树的最长链-POJ 1985 树的直径(最长链)+牛客小白月赛6-桃花

    求树直径的方法在此转载一下大佬们的分析: 可以随便选择一个点开始进行bfs或者dfs,从而找到离该点最远的那个点(可以证明,离树上任意一点最远的点一定是树的某条直径的两端点之一:树的直径:树上的最长简 ...

  7. 读《移山之道——VSTS软件开发指南》

    读<移山之道>这本书差不多用了一个星期的时间,感觉还是收获了一些知识的,以前只是会简单地编个小程序(虽然现在也是这样),但看过这本书之后我对软件开发这个概念的认识度有了从一片模糊到了解大体 ...

  8. BugPhobia开发篇章:Beta阶段第IX次Scrum Meeting

    0x01 :Scrum Meeting基本摘要 Beta阶段第九次Scrum Meeting 敏捷开发起始时间 2015/12/25 00:00 A.M. 敏捷开发终止时间 2015/12/28 23 ...

  9. Linux 第七章学习笔记

    1:链接概述 链接(linking)是将各种代码和数据部分收集起来并组合成为一个单一文件的过程,这个文件可被加载(或被拷贝)到存储并执行. 编译系统提供的调用预处理器.编译器.汇编器和链接器来构造目标 ...

  10. Sprint 冲刺第三阶段第一天

    1.今晚我在整理之前的代码,检查细节,然后发现游戏要返回上一界面竟然出现了问题“项目停止运行”,仔细检查没办法解决,后来百度可能是因为修改了之前文件的名字,可在AndroidManifest.xml中 ...