题意:给n堆石子,每次合并相邻两堆,花费是这两堆的石子个数之和(1和n相邻),求全部合并,最小总花费

若不要求相邻,可以贪心地合并最小的两堆。然而要求相邻就有反例

为了方便,我们可以把n个数再复制一遍,放到第n个数后,就不用考虑环的问题了

我们设f[i][j]为合并区间[i,j]所需要的最小花费,然后就可以得到

f[i][j]=min{f[i][k]+f[k+1][j]+sum[i,j]} ,i<=k<=j,i<j;

f[i][i]=0

然后就可以用$O(n^3)$的复杂度递推啦。此题结束。

然而n<=1000...

四边形不等式:

若f[i][j]=min{f[i][k]+f[k+1][j]+w[i][j]} ,i<=k<=j;

 s[i][j]为使f[i][j]取到最小值的k ,其中有(a<=b<=c<=d)

  1.w[b][c]<=w[a][d] (w满足区间包含单调性)

  2.w[a][c]+w[b][d]<=w[b][c]+w[a][d] (w满足四边形不等式)

 则f也满足四边形不等式(*)

 所以s[i][j-1]<=s[i][j]<=s[i+1][j] (**)

*、**:太麻烦了不证了!

于是就可以优化刚才的dp(sum显然满足以上两点),每次的k不是从i枚举到j,而是从s[i][j-1]枚举到s[i+1][j],这样,平摊下来,就可以在O(1)复杂度完成f[i][j]的计算

然而我很沙雕的设f[i][j]表示长度为i,从j开始的区间了..虽然影响不大但是感觉写起来变得有点迷

然后按照我的写法,n=1的时候是要特判的...

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#include<cmath>
#define LL long long int
#define inf 0x3f3f3f3f
using namespace std;
const int maxn=; LL rd(){
LL x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int N,num[maxn];
int f[maxn][maxn][],sum[maxn]; int main(){
int i,j,k;
while(~scanf("%d",&N)){
int ans=inf;
for(i=;i<=N;i++) num[i+N]=num[i]=rd();
if(N==){printf("0\n");continue;}
for(i=;i<=*N;i++) sum[i]=sum[i-]+num[i],f[][i][]=i;
for(i=;i<=N;i++){
for(j=;j<*N-i+;j++){
f[i][j][]=inf;
for(k=f[i-][j][];k<=f[i-][j+][];k++){
int a=f[k-j+][j][]+f[i-k+j-][k+][];
if(a<f[i][j][]) f[i][j][]=a,f[i][j][]=k;
}f[i][j][]+=sum[i+j-]-sum[j-];
if(i==N) ans=min(ans,f[i][j][]);
}
}printf("%d\n",ans);
} return ;
}

hdu3506 Monkey Party (区间dp+四边形不等式优化)的更多相关文章

  1. hdu 3506 Monkey Party 区间dp + 四边形不等式优化

    http://acm.hdu.edu.cn/showproblem.php?pid=3506 四边行不等式:http://baike.baidu.com/link?url=lHOFq_58V-Qpz_ ...

  2. CSP 201612-4 压缩编码 【区间DP+四边形不等式优化】

    问题描述 试题编号: 201612-4 试题名称: 压缩编码 时间限制: 3.0s 内存限制: 256.0MB 问题描述: 问题描述 给定一段文字,已知单词a1, a2, …, an出现的频率分别t1 ...

  3. 区间dp+四边形不等式优化

    区间dp+四边形优化 luogu:p2858 题意 给出一列数 \(v_i\),每天只能取两端的数,第 j 天取数价值为\(v_i \times j\),最大价值?? 转移方程 dp[i][j] :n ...

  4. P1880 [NOI1995]石子合并[区间dp+四边形不等式优化]

    P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. # ...

  5. Codevs 3002 石子归并 3(DP四边形不等式优化)

    3002 石子归并 3 时间限制: 1 s 空间限制: 256000 KB 题目等级 : 钻石 Diamond 题目描述 Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次 ...

  6. [51nod 1022] 石子归并v2 [dp+四边形不等式优化]

    题面: 传送门 思路: 加强版的石子归并,现在朴素的区间dp无法解决问题了 首先我们破环成链,复制一条一样的链并粘贴到原来的链后面,变成一个2n长度的序列,在它上面dp,效率O(8n^3) 显然是过不 ...

  7. 51nod 1022 石子归并 V2 —— DP四边形不等式优化

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1022 1022 石子归并 V2  基准时间限制:1 秒 空间限 ...

  8. HDU 3516 DP 四边形不等式优化 Tree Construction

    设d(i, j)为连通第i个点到第j个点的树的最小长度,则有状态转移方程: d(i, j) = min{ d(i, k) + d(k + 1, j) + p[k].y - p[j].y + p[k+1 ...

  9. HDU-2829 Lawrence (DP+四边形不等式优化)

    题目大意:有n个敌方军火库呈直线排列,每个军火库有一个值vi,并且任意相邻的两个库之间都有通道相连.对于任意一条连起来的军火库链,它对我方的威胁可以用函数w(i,j)表示为:w(i,j)=vi*sum ...

随机推荐

  1. webpack 构建 node_modules 中公司内部组件

    构建 node_modules 中特定的组件 { test:/\.js$/, exclude: /node_modules\/(?!(zt-)\/).*/, use:[ { loader:" ...

  2. linux的convert图片处理工具

    得到一个图片的尺寸, identify test.png 结果为: test.png PNG 178x15 178x15+0+0 16-bit PseudoClass 65536c 2.28kb 使用 ...

  3. 【强化学习】python 实现 q-learning 例五(GUI)

    本文作者:hhh5460 本文地址:https://www.cnblogs.com/hhh5460/p/10143579.html 感谢pengdali,本文的 class Maze 参考了他的博客, ...

  4. SpringBoot日记——ElasticSearch全文检索

    看到标题的那一串英文,对于新手来说一定比较陌生,而说起检索,应该都知道吧. 这个ElasticSearch目前我们的首选,他主要有可以提供快速的存储.搜索.分析海量数据的作用.他是一个分布式搜索服务, ...

  5. CentOS7中安装redis5.0

    1. 环境介绍 CentOS7 (未安装Development Tools) 2. 下载Redis5.0-rc3 wget -O redis-5.0-rc3.tar.gz https://github ...

  6. High-level structure of a simple compiler高級結構的簡單編譯器

    1.lexical analysis,which analyzes the character string presented to it and divides it up into tokens ...

  7. 1013 B. And

    链接 [http://codeforces.com/contest/1013/problem/B] 题意 给你一个n和x,再给n个数,有一种操作用x&a[i]取代,a[i],问使其中至少两个数 ...

  8. Linux内核分析作业 NO.7

    可执行程序的装载 于佳心  原创作品转载请注明出处  <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 实 ...

  9. 第三个sprint冲刺第二阶段

    内测版:

  10. JSTLView快速国际化(SpringMVC)

    JSTLView:快速国际化:只要导入了jstl的jar包,以前默认创建的InternalResouceView都会被使用jstlView替代:    国际化的新步骤:           1).写好 ...