Problem Description
Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. One day Hibix opened purse and found there were some coins. He decided to buy a very nice watch in a nearby shop. He wanted to pay the exact price(without change) and he known the price would not more than m.But he didn't know the exact price of the watch.

You are to write a program which reads n,m,A1,A2,A3...An and C1,C2,C3...Cn corresponding to the number of Tony's coins of value A1,A2,A3...An then calculate how many prices(form 1 to m) Tony can pay use these coins.

 
Input
The input contains several test cases. The first line of each test case contains two integers n(1 ≤ n ≤ 100),m(m ≤ 100000).The second line contains 2n integers, denoting A1,A2,A3...An,C1,C2,C3...Cn (1 ≤ Ai ≤ 100000,1 ≤ Ci ≤ 1000). The last test case is followed by two zeros.
 
Output
For each test case output the answer on a single line.
 
Sample Input
3 10
1 2 4 2 1 1
2 5
1 4 2 1
0 0
 
Sample Output
8
4
 
题意:给面值不同,有固定个数的硬币,能有多少种不同的不同总面值的组合方式;
思路: 我用的是完全背包的二进制拆分法
#include <cstdio>
#include <map>
#include <iostream>
#include<cstring>
#include<bits/stdc++.h>
#define ll long long int
#define M 6
using namespace std;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
int moth[]={,,,,,,,,,,,,};
int dir[][]={, ,, ,-, ,,-};
int dirs[][]={, ,, ,-, ,,-, -,- ,-, ,,- ,,};
const int inf=0x3f3f3f3f;
const ll mod=1e9+;
int n,m;
int a[];
int c[];
int dp[];
int main(){
ios::sync_with_stdio(false);
while(cin>>n>>m){
if(!n&&!m) break;
memset(dp,,sizeof(dp));
for(int i=;i<=n;i++)
cin>>a[i];
for(int i=;i<=n;i++)
cin>>c[i];
dp[]=;
for(int i=;i<=n;i++){
int temp=c[i]; int now=;
while(){ //把c[i]拆解成若干个2的幂次方
if(temp>now){
temp-=now;
for(int j=m;j>=now*a[i];j--)
if(dp[j-now*a[i]])
dp[j]=;
now*=;
}else{
for(int j=m;j>=temp*a[i];j--)
if(dp[j-temp*a[i]])
dp[j]=;
break;
}
}
}
int ans=;
for(int i=;i<=m;i++)
if(dp[i])
ans++;
cout<<ans<<endl;
}
}

hdu 2844 coins(多重背包 二进制拆分法)的更多相关文章

  1. hdu 2844 Coins (多重背包+二进制优化)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=2844 思路:多重背包 , dp[i] ,容量为i的背包最多能凑到多少容量,如果dp[i] = i,那么代表 ...

  2. HDu -2844 Coins多重背包

    这道题是典型的多重背包的题目,也是最基础的多重背包的题目 题目大意:给定n和m, 其中n为有多少中钱币, m为背包的容量,让你求出在1 - m 之间有多少种价钱的组合,由于这道题价值和重量相等,所以就 ...

  3. HDU - 2844 Coins(多重背包+完全背包)

    题意 给n个币的价值和其数量,问能组合成\(1-m\)中多少个不同的值. 分析 对\(c[i]*a[i]>=m\)的币,相当于完全背包:\(c[i]*a[i]<m\)的币则是多重背包,考虑 ...

  4. HDU 2844 Coins (多重背包计数 空间换时间)

    Coins Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  5. hdu 2844 Coins 多重背包(模板) *

    Coins                                                                             Time Limit: 2000/1 ...

  6. HDU 2844 Coin 多重背包

    Coins Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  7. hdu2844 Coins -----多重背包+二进制优化

    题目意思:给出你n种硬币的面额和数量,询问它能够组合成1~m元中的几种情况. 这题如果直接按照完全背包来写的话,会因为每一种硬币的数目1 ≤ Ci ≤ 1000而超时,所以这里需要运用二进制优化来解决 ...

  8. POJ 1014 / HDU 1059 Dividing 多重背包+二进制分解

    Problem Description Marsha and Bill own a collection of marbles. They want to split the collection a ...

  9. 51nod——1086、1257背包问题V2(多重背包二进制拆分转01) V3(分数规划+二分贪心)

    V3其实和dp关系不大,思想挂标题上了,丑陋的代码不想放了.

随机推荐

  1. BJOI2018简要题解

    BJOI2018简要题解 D1T1 二进制 题意 pupil 发现对于一个十进制数,无论怎么将其的数字重新排列,均不影响其是不是 \(3\) 的倍数.他想研究对于二进制,是否也有类似的性质. 于是他生 ...

  2. asp.net core部署时自定义监听端口,提高部署的灵活性

    另一种方式 https://www.cnblogs.com/stulzq/p/9039836.html 代码截图: 贴一下代码,方便复制: //默认端口号5000 string port = &quo ...

  3. 干货分享:vue2.0做移动端开发用到的相关插件和经验总结(2)

    最近一直在做移动端微信公众号项目的开发,也是我首次用vue来开发移动端项目,前期积累的移动端开发经验较少.经过这个项目的锻炼,加深了对vue相关知识点的理解和运用,同时,在项目中所涉及到的微信api( ...

  4. Crackme006 - 全新160个CrackMe学习系列(图文|视频|注册机源码)

    知乎:逆向驿站 原文链接 CrackMe006 | 难度适中适合练手 |160个CrackMe深度解析(图文+视频+注册机源码) crackme006,依然是delphi的,而且没壳子,条线比较清晰, ...

  5. 牛客多校第二场A run(基础DP)

    链接:https://www.nowcoder.com/acm/contest/140/A来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 131072K,其他语言2621 ...

  6. Java实验报告一:Java开发环境的熟悉

    实验要求: 1. 使用JDK编译.运行简单的Java程序 2.使用Eclipse 编辑.编译.运行.调试Java程序 实验内容 (一)   命令行下Java程序开发 (二)Eclipse下Java程序 ...

  7. Daily Scrum 12.8

    Member Task on 12.08 Task on 12.09 仇栋民 参与M2阶段第二次决策会议 开始Task964 : 活动评论功能雏形 康家华 开始Task982 : 完成活动界面的设计稿 ...

  8. 分布式版本控制系统Git的安装与使用 第二次作业

    (本次作业要求来自:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE1/homework/2103) 一.安装Git bash软件和安装notepad++ 二 ...

  9. Geekers团队成立日志

    大家好,作为团队的队长,今天在这里非常荣幸能够发表我们团队的第一篇博客,来宣布我们团队的名字:Geekers! Geek,英文中代表“怪人”,随着时代进步Geek被赋予了新的含义——极客!Steve ...

  10. 配置wbepack

    proxyTable:{ //反向代理 先建立连接 '/sexLady':{ target:url//请求地址 暗号:'/sexLady ' changeOrigin:true ,//类似baseUr ...