Problem Description
Whuacmers use coins.They have coins of value A1,A2,A3...An Silverland dollar. One day Hibix opened purse and found there were some coins. He decided to buy a very nice watch in a nearby shop. He wanted to pay the exact price(without change) and he known the price would not more than m.But he didn't know the exact price of the watch.

You are to write a program which reads n,m,A1,A2,A3...An and C1,C2,C3...Cn corresponding to the number of Tony's coins of value A1,A2,A3...An then calculate how many prices(form 1 to m) Tony can pay use these coins.

 
Input
The input contains several test cases. The first line of each test case contains two integers n(1 ≤ n ≤ 100),m(m ≤ 100000).The second line contains 2n integers, denoting A1,A2,A3...An,C1,C2,C3...Cn (1 ≤ Ai ≤ 100000,1 ≤ Ci ≤ 1000). The last test case is followed by two zeros.
 
Output
For each test case output the answer on a single line.
 
Sample Input
3 10
1 2 4 2 1 1
2 5
1 4 2 1
0 0
 
Sample Output
8
4
 
题意:给面值不同,有固定个数的硬币,能有多少种不同的不同总面值的组合方式;
思路: 我用的是完全背包的二进制拆分法
#include <cstdio>
#include <map>
#include <iostream>
#include<cstring>
#include<bits/stdc++.h>
#define ll long long int
#define M 6
using namespace std;
inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
inline ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
int moth[]={,,,,,,,,,,,,};
int dir[][]={, ,, ,-, ,,-};
int dirs[][]={, ,, ,-, ,,-, -,- ,-, ,,- ,,};
const int inf=0x3f3f3f3f;
const ll mod=1e9+;
int n,m;
int a[];
int c[];
int dp[];
int main(){
ios::sync_with_stdio(false);
while(cin>>n>>m){
if(!n&&!m) break;
memset(dp,,sizeof(dp));
for(int i=;i<=n;i++)
cin>>a[i];
for(int i=;i<=n;i++)
cin>>c[i];
dp[]=;
for(int i=;i<=n;i++){
int temp=c[i]; int now=;
while(){ //把c[i]拆解成若干个2的幂次方
if(temp>now){
temp-=now;
for(int j=m;j>=now*a[i];j--)
if(dp[j-now*a[i]])
dp[j]=;
now*=;
}else{
for(int j=m;j>=temp*a[i];j--)
if(dp[j-temp*a[i]])
dp[j]=;
break;
}
}
}
int ans=;
for(int i=;i<=m;i++)
if(dp[i])
ans++;
cout<<ans<<endl;
}
}

hdu 2844 coins(多重背包 二进制拆分法)的更多相关文章

  1. hdu 2844 Coins (多重背包+二进制优化)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=2844 思路:多重背包 , dp[i] ,容量为i的背包最多能凑到多少容量,如果dp[i] = i,那么代表 ...

  2. HDu -2844 Coins多重背包

    这道题是典型的多重背包的题目,也是最基础的多重背包的题目 题目大意:给定n和m, 其中n为有多少中钱币, m为背包的容量,让你求出在1 - m 之间有多少种价钱的组合,由于这道题价值和重量相等,所以就 ...

  3. HDU - 2844 Coins(多重背包+完全背包)

    题意 给n个币的价值和其数量,问能组合成\(1-m\)中多少个不同的值. 分析 对\(c[i]*a[i]>=m\)的币,相当于完全背包:\(c[i]*a[i]<m\)的币则是多重背包,考虑 ...

  4. HDU 2844 Coins (多重背包计数 空间换时间)

    Coins Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  5. hdu 2844 Coins 多重背包(模板) *

    Coins                                                                             Time Limit: 2000/1 ...

  6. HDU 2844 Coin 多重背包

    Coins Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  7. hdu2844 Coins -----多重背包+二进制优化

    题目意思:给出你n种硬币的面额和数量,询问它能够组合成1~m元中的几种情况. 这题如果直接按照完全背包来写的话,会因为每一种硬币的数目1 ≤ Ci ≤ 1000而超时,所以这里需要运用二进制优化来解决 ...

  8. POJ 1014 / HDU 1059 Dividing 多重背包+二进制分解

    Problem Description Marsha and Bill own a collection of marbles. They want to split the collection a ...

  9. 51nod——1086、1257背包问题V2(多重背包二进制拆分转01) V3(分数规划+二分贪心)

    V3其实和dp关系不大,思想挂标题上了,丑陋的代码不想放了.

随机推荐

  1. 【已解决】在 Visual Studio 中设置 JavaScript/TypeScript 的断点 脚本出现自动中断错误

    运行ASP.NET Core 程序出现错误如下: 已启用 Visual Studio 中的 Chrome 脚本调试 在 Visual Studio 中设置 JavaScript/TypeScript ...

  2. System.Data.SqlClient.SqlException:“对象名 'customer' 无效。"

    连接数据库出错, 错误原因:表名错误.

  3. 用EXCLE群发outlook邮件

    Outlookでメール一括送信する方法(差し込み.HTML形式.添付ファイル複数あり) メールを一括送信する方法はウェブ上にいくつも紹介されていましたが.以下のすべての条件を満たすものが見つからなかっ ...

  4. C程序设计实践教学提示

    实践教学要点:实验重心应放在实验室之外,重在实验准备 对实验题目的分析是一个复杂的工作,很发时间的,如全部放在实验上机时来完成,是不现实的.(特别是后面实验的难度增大,或实验代码增多的情况下),而且, ...

  5. PAT (Basic Level) Practice 1001 害死人不偿命的(3n+1)猜想

    https://pintia.cn/problem-sets/994805260223102976/problems/994805325918486528 卡拉兹(Callatz)猜想: 对任何一个自 ...

  6. Kitematic - VirtualBox is not installed. Docker for windows 10

    Kitematic - VirtualBox is not installed. Docker for windows 10 https://github.com/docker/kitematic/i ...

  7. SQLSERVER 创建对Oracle数据库的DBlink以及查询使用

    1. 与针对oracle数据库一样, 在sqlserver中创建对oracle数据库的dblink 安全性上面也进行定义(貌似不需要跟访问字符串只需要填一个即可) 发现有的版本改注册表不管用 还得修改 ...

  8. 数字证书签发,授权等相关以及https建立通信过程

    一直以来都对数字证书的签发,以及信任等事情一知半解.总算有个闲适的周末来总结和深入一下相关的知识. CA: CA(Certificate Authority)是证书的签发机构,它是负责管理和签发证书的 ...

  9. BZOJ4864[BeiJing 2017 Wc]神秘物质——非旋转treap

    题目描述 21ZZ 年,冬. 小诚退休以后, 不知为何重新燃起了对物理学的兴趣. 他从研究所借了些实验仪器,整天研究各种微观粒子.这 一天, 小诚刚从研究所得到了一块奇异的陨石样本, 便迫不及待地开始 ...

  10. BZOJ2557[Poi2011]Programming Contest——匈牙利算法+模拟费用流

    题目描述 Bartie and his friends compete in the Team Programming Contest. There are n contestants on each ...