Luogu 1941 【NOIP2014】飞扬的小鸟 (动态规划)

Description

Flappy Bird 是一款风靡一时的休闲手机游戏。玩家需要不断控制点击手机屏幕的频率来调节小鸟的飞行高度,让小鸟顺利通过画面右方的管道缝隙。如果小鸟一不小心撞到了水管或者掉在地上的话,便宣告失败。

为了简化问题,我们对游戏规则进行了简化和改编:

  • 游戏界面是一个长为n ,高为 m 的二维平面,其中有k 个管道(忽略管道的宽度)。
  • 小鸟始终在游戏界面内移动。小鸟从游戏界面最左边任意整数高度位置出发,到达游戏界面最右边时,游戏完成。
  • 小鸟每个单位时间沿横坐标方向右移的距离为1,竖直移动的距离由玩家控制。如果点击屏幕,小鸟就会上升一定高度X ,每个单位时间可以点击多次,效果叠加;
  • 如果不点击屏幕,小鸟就会下降一定高度Y 。小鸟位于横坐标方向不同位置时,上升的高度X 和下降的高度Y 可能互不相同。
  • 小鸟高度等于0 或者小鸟碰到管道时,游戏失败。小鸟高度为 m 时,无法再上升。

现在,请你判断是否可以完成游戏。如果可以,输出最少点击屏幕数;否则,输出小鸟最多可以通过多少个管道缝隙。

Input

第1 行有3 个整数n ,m ,k,分别表示游戏界面的长度,高度和水管的数量,每两个整数之间用一个空格隔开;接下来的n 行,每行2 个用一个空格隔开的整数X 和Y ,依次表示在横坐标位置0 ~n- 1上玩家点击屏幕后,小鸟在下一位置上升的高度X ,以及在这个位置上玩家不点击屏幕时,小鸟在下一位置下降的高度Y 。接下来k 行,每行3 个整数P ,L ,H ,每两个整数之间用一个空格隔开。每行表示一个管道,其中P 表示管道的横坐标,L 表示此管道缝隙的下边沿高度为L ,H 表示管道缝隙上边沿的高度(输入数据保证P 各不相同,但不保证按照大小顺序给出)。

Output

第一行,包含一个整数,如果可以成功完成游戏,则输出1 ,否则输出0 。

第二行,包含一个整数,如果第一行为1,则输出成功完成游戏需要最少点击屏幕数,否则,输出小鸟最多可以通过多少个管道缝隙。

Sample Input

10 10 6

3 9

9 9

1 2

1 3

1 2

1 1

2 1

2 1

1 6

2 2

1 2 7

5 1 5

6 3 5

7 5 8

8 7 9

9 1 3

Sample Output

1

6

Http

Luogu:https://www.luogu.org/problem/show?pid=1941

Source

动态规划

解决思路

这道题目讲起来并不算太难,即完全背包+01背包。但细节不好调。

设F[i][j]表示在第i列高度为j的时候的最小点击数,令X[i]表示在第i列点击一次向上飞的距离,令Y[i]表示在第i列不点击是下降的距离。首先动态转移方程,因为鸟向上飞是可以点击多次的,为了防止出现在同一列即向上又向下的情况,所以先做完全背包。

\(F[i][j]=min(F[i-1][j-X[i-1],F[i][j-X[i-1])\{j \in [X[i-1]+1,m]\}\)

然后再做01背包

\(F[i][j]=min(F[i][j],F[i-1][j+Y[i-1])\{j \in [1,m-Y[i-1]] \}\)

另外还有特判高度为m的情况,也就是对于\(j\in [m-Y[i-1],m]\)有

\(F[i][m]=min(F[i][m],F[i][j]+1,F[i-1][j]+1)\)

大致的思路就是这样,下面讲一讲本题一些细节。

  • 鸟是不能飞到高度为0的地方的,所以转移也不能从0转移过来,所以在考虑向上飞的情况时,j应该从X[i-1]+1开始,注意一定要+1
  • 注意管道,如果题目中给出的下管道高度是L,上管道高度是R,则实际可以经过的范围应该是[L+1,R-1],也就是说,如果有管道,不管上面的管道长度是多少,高度为m的地方都是不能走的
  • 做向上飞的情况的时候要注意,虽然说理论上讲实际能飞的距离是[L+1,R-1],但我们依然要从X[i-1]+1开始循环到最大,就算X[i-1]+1这个高度实际上是管道。为什么呢?这是由完全背包的性质决定的。比如说当前第i列下管道的高度是10,上一次点一次能飞的高度是3,那么如果我们从10+1=11开始循环,就只能从F[i-1][11-3]转移过来,而实际上可能F[i-1][2]点3次后的解更优。(自己手动模拟一下完全背包的运作过程,然后你就能发现这个问题)。最后执行完后我们再把是管道的地方的F置为不可解。
  • 如果某一次的所有F都为不可解,那么说明无解,此时输出鸟飞过的管道个数

(更多细节请参考代码,已经在代码中标记出来啦)

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std; const int maxN=20011;
const int maxM=2011;
const int inf=147483647;//注意这里inf去掉了前面的2,这里是为了方便做加法时不会出现负数 int n,m,K;
int X[maxN];//X[i]表示第i列点一次能飞的高度
int Y[maxN];//Y[i]表示第i列如果不点降低的高度
bool is_pipe[maxN];//is_pipe[i]表示第i列是否有管道,1为有,0为没有,方便统计飞过的管道数
int Pipe_up[maxN];//Pipe_up[i]表示第i列上管道的高度,如果没有,置为m+1
int Pipe_down[maxN];//Pipe_down[i]表示第i列下管道的高度,如果没有,置为0
int F[2][maxM];//滚动动归 int main()
{
scanf("%d%d%d",&n,&m,&K);
memset(Pipe_up,0,sizeof(Pipe_up));
memset(Pipe_down,0,sizeof(Pipe_down));
memset(is_pipe,0,sizeof(is_pipe));
for (int i=0;i<n;i++)
scanf("%d%d",&X[i],&Y[i]);
for (int i=1;i<=n;i++)//将管道的信息初始化
{
Pipe_down[i]=0;
Pipe_up[i]=m+1;
}
for (int i=1;i<=K;i++)//读入管道
{
int pipe_pos,l,r;
scanf("%d%d%d",&pipe_pos,&l,&r);
Pipe_down[pipe_pos]=l;
Pipe_up[pipe_pos]=r;
is_pipe[pipe_pos]=1;
}
for (int i=1;i<=m;i++)//第0列初始化
F[0][i]=0;
int cnt=0;
int Ans;
for (int i=1;i<=n;i++)
{
int now=i&1;
Ans=inf;//这个Ans有两个用处,一是在最后一次统计答案,二是用来判断本次运算完后是否出现无解的情况
for (int j=0;j<=m;j++)//每一次先置为无穷大
F[now][j]=inf;
//cout<<Pipe_down[i]<<" "<<Pipe_up[i]<<endl; for (int j=X[i-1]+1;j<=m;j++)//先向上飞,注意循环初值
{
F[now][j]=min(F[!now][j-X[i-1]],F[now][j-X[i-1]])+1;
//cout<<F[!now][j-X[i-1]]<<endl;
} for (int j=m-X[i-1];j<=m;j++)//特判m的情况
{
F[now][m]=min(F[now][m],F[now][j]+1);
F[now][m]=min(F[now][m],F[!now][j]+1);
} for (int j=m-Y[i-1];j>=1;j--)//向下飞
F[now][j]=min(F[now][j],F[!now][j+Y[i-1]]); cnt+=(int)(is_pipe[i]);//统计管道数 for (int j=1;j<=m;j++)//统计当前最优解,如果是最后一列则是答案
{
if ((j<=Pipe_down[i])||(j>=Pipe_up[i]))
F[now][j]=inf;
Ans=min(Ans,F[now][j]);
}
if (Ans==inf)//如果Ans没有被更新,则说明此时无解,输出管道数。注意,因为无解的情况一定会出现在管道处,所以cnt-1
{
printf("0\n%d\n",cnt-1);
return 0;
}
/*
for (int j=1;j<=m;j++)
if (F[now][j]!=inf)
cout<<F[now][j]<<" ";
else
cout<<"i ";
cout<<endl;
//*/
}
printf("1\n%d\n",Ans);//如果有解,答案就在Ans里
return 0;
}

Luogu 1941 【NOIP2014】飞扬的小鸟 (动态规划)的更多相关文章

  1. LOJ2500 NOIP2014 飞扬的小鸟 【背包DP】*

    LOJ2500 NOIP2014 飞扬的小鸟 LINK 题目大意就是说有n个柱子,在每一秒你可以选择不点下降高度y和点p次上升x∗p,若果当前位置加上x∗p大于上界m,就会停在m. 如果可以成功穿越所 ...

  2. [NOIP2014]飞扬的小鸟[DP]

    [NOIP2014]飞扬的小鸟 ——!x^n+y^n=z^n 题目描述: Flappy Bird 是一款风靡一时的休闲手机游戏.玩家需要不断控制点击手机屏幕的频率来调节小鸟的飞行高度,让小鸟顺利通过画 ...

  3. NOIP2014 飞扬的小鸟

    3. 飞扬的小鸟 (bird.cpp/c/pas) [问题描述] Flappy Bird 是一款风靡一时的休闲手机游戏.玩家需要不断控制点击手机屏幕的频率来调节小鸟的飞行高度,让小鸟顺利通过画面右方的 ...

  4. vijos1907[noip2014]飞扬的小鸟(完全背包)

    描述 Flappy Bird 是一款风靡一时的休闲手机游戏.玩家需要不断控制点击手机屏幕的频率来调节小鸟的飞行高度,让小鸟顺利通过画面右方的管道缝隙.如果小鸟一不小心撞到了水管或者掉在地上的话,便宣告 ...

  5. [vijos1907][NOIP2014]飞扬的小鸟

    Description 是一款风靡一时的休闲手机游戏.玩家需要不断控制点击手机屏幕的频率来调节小鸟的飞行高度,让小鸟顺利通过画面右方的管道缝隙.如果小鸟一不小心撞到了水管或者掉在地上的话,便宣告失败. ...

  6. JZYZOJ1445 [noip2014day1-T3]飞扬的小鸟 动态规划 完全背包

    http://172.20.6.3/Problem_Show.asp?id=1445 很容易看出来动态规划的本质,但是之前写的时候被卡了一下(不止一下),还是写一下题解. 直接暴力O(n*m^2)大概 ...

  7. NOIP2014飞扬的小鸟

    长为n,高为m的二维平面,其中有k个管道(忽略管道的宽度)小鸟始终在游戏界面内移动.从最左边任意高度位置出发,到达游戏界面最右边,游戏完成每个单位时间沿横坐标方向右移距离为1,竖直移动的距离由玩家控制 ...

  8. NOIP2014飞扬的小鸟[DP][WRONG]

    坑人啊朴素的dp 75分 用了完全背包才是80分,结果普遍偏小 为什么啊啊啊啊啊 等以后再写一遍吧 #include<iostream> #include<cstdio> #i ...

  9. [NOIP2014]飞扬的小鸟 D1 T3 loj2500 洛谷P1941

    分析: 这是一个DP,没什么好说的,细节很烦人. DP[i][j]表示到第i个位置,高度为j点最少的次数. 转移: 当j=m时 k属于[m-h,m]都可以向DP[i][j]转移,即dp[i][j]=m ...

  10. luogu1941 [NOIp2014]飞扬的小鸟 (dp)

    设f[i][j]为到达(i,j)这个位置的最小操作数 就有$f[i][j]=min\{f[i-1][j+Y[i-1]],f[i-1][j-X[i-1]*k]+k\}$ 然后考虑优化一下转移: 对于一系 ...

随机推荐

  1. python常用程序算法

    一.冒泡排序: 1.冒泡排序是将无序的数字排列成从小到大的有序组合: 过程:对相邻的两个元素进行比较,对不符合要求的数据进行交换,最后达到数据有序的过程. 规律: 1.冒泡排序的趟数时固定的:n-1 ...

  2. 如何利用Android Studio打包React Native APK

    ok!百度出来的东西很杂,所以,这里介绍一种最简单,最合适我们(新手,应该是吧)的APK的打包方式! 当然!这种打包是基于Android Studio的,所以,注意喽!!!! 废话不多说开始吧! 首先 ...

  3. v-for v-if || v-else

    <el-col> <div v-for="item in resultDetail" class="physical-content" v-i ...

  4. 对MSF八个原则的思考

    第一个原则,也是MSF中最基础的一个原则,推动信息共享与沟通.这个原则的一个特点是,对于团队成员的所有工作,都会被记录下来,包括走了弯路的.出现bug但已调试解决的部分.对于新加入团队的成员或者以前没 ...

  5. Linux 第八周实验 进程的切换和系统的一般执行过程

    姬梦馨 原创作品 <Linux内核分析>MOOC课程:http://mooc.study.163.com/course/USTC-1000029000 第八讲 进程的切换和系统的一般执行过 ...

  6. 现代程序设计 homework-02

    首先显示博客要求: 描述在这么多相似的需求面前, 你怎么维护你的设计 (父类/子类/基类, UML, 设计模式,  或者其它方法) 让整个程序的架构不至于崩溃的? 建议从后往前来搞,比如我通读一遍需求 ...

  7. hadoop伪分布式安装之Linux环境准备

    Hadoop伪分布式安装之Linux环境准备 一.软件版本 VMare Workstation Pro 14 CentOS 7 32/64位 二.实现Linux服务器联网功能 网络适配器双击选择VMn ...

  8. MySQL基础~~编程语法

    常量 数值 字符串:单引号或者双引号括起来.包括普通字符串或者日期格式的字符串. 布尔值:false(FALSE)对应数字值为0.true(TRUE)对应数字值为1. NULL:可以参考http:// ...

  9. HDU 5702 Solving Order

    http://acm.hdu.edu.cn/showproblem.php?pid=5702 Problem Description Welcome to HDU to take part in th ...

  10. Redis交互编程语言及客户端

    Redis Desktop Manager https://redisdesktop.com/download Redis Clients https://redis.io/clients/     ...