题意:给一个环,环上有n块,每块有个值,每一次操作是对每个点,他的值变为原来与他距离不超过d的位置的和,问k(10^7)次操作后每块的值。

解法:一看就要化为矩阵来做,矩阵很好建立,大白书P157页有讲,大概为:

[1 1 0 .. 0 1]

[1 1 1 .. .. 0]

...

[1 1 .. .. .. 1]  的循环矩阵,可以证明,循环矩阵的乘积还是循环矩阵,且循环矩阵的性质: a[i][j] = a[i-1][j-1] (循环的) ,所以,我们每次矩阵相乘只需要算出第一行,余下的不需要通过矩阵乘法来算出,直接根据规律推出,这样,矩阵乘法的复杂度就降到了O(n^2),加上快速幂,总复杂度O(n^2log(k))。

注意:中间相乘的时候a[i][k]*b[k][j]可能会超过int范围,要加一个long long,否则会WA.

代码:(6000+ ms  也是醉了。。)

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#define SMod m
#define ll long long
using namespace std; int n,m,k,d;
struct Matrix
{
int m[][];
Matrix()
{
memset(m,,sizeof(m));
for(int i=;i<=n;i++)
m[i][i] = ;
}
}; Matrix Mul(Matrix a,Matrix b)
{
Matrix res;
int i,j,k;
for(j=;j<=n;j++)
{
res.m[][j] = ;
for(k=;k<=n;k++)
res.m[][j] = (res.m[][j]+(ll)a.m[][k]*b.m[k][j]%SMod + SMod)%SMod;
}
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
res.m[i][j] = res.m[i-][j-];
res.m[i][] = res.m[i-][n];
}
return res;
} Matrix fastm(Matrix a,int b)
{
Matrix res;
while(b)
{
if(b&)
res = Mul(res,a);
a = Mul(a,a);
b >>= ;
}
return res;
} Matrix Muti(Matrix a,Matrix b)
{
Matrix res;
int i,j,k;
for(i=;i<=n;i++)
{
res.m[i][] = ;
for(k=;k<=n;k++)
res.m[i][] = (res.m[i][]+(ll)a.m[i][k]*b.m[k][]%SMod + SMod)%SMod;
}
return res;
} int main()
{
int i,j;
while(scanf("%d%d%d%d",&n,&m,&d,&k)!=EOF)
{
Matrix R;
memset(R.m,,sizeof(R.m));
for(i=;i<=n;i++)
scanf("%d",&R.m[i][]),R.m[i][]%=SMod;
Matrix A;
for(i=;i<=d+;i++)
A.m[][i] = ;
for(i=n;i>=n-d+;i--)
A.m[][i] = ;
for(i=;i<=n;i++)
{
for(j=;j<=n;j++)
A.m[i][j] = A.m[i-][j-];
A.m[i][] = A.m[i-][n];
}
/*for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
if(min(abs(i-j),n-abs(i-j)) <= d)
A.m[j][i] = 1;
else
A.m[j][i] = 0;
}
}*/
Matrix ans = fastm(A,k);
ans = Muti(ans,R);
for(i=;i<=n;i++)
printf("%d%c",ans.m[i][]%m,i==n?'\n':' ');
}
return ;
}

POJ 3150 Cellular Automaton --矩阵快速幂及优化的更多相关文章

  1. [POJ 3150] Cellular Automaton (矩阵高速幂 + 矩阵乘法优化)

    Cellular Automaton Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 3048   Accepted: 12 ...

  2. POJ 3150 Cellular Automaton(矩阵高速幂)

    题目大意:给定n(1<=n<=500)个数字和一个数字m,这n个数字组成一个环(a0,a1.....an-1).假设对ai进行一次d-step操作,那么ai的值变为与ai的距离小于d的全部 ...

  3. poj 3070 && nyoj 148 矩阵快速幂

    poj 3070 && nyoj 148 矩阵快速幂 题目链接 poj: http://poj.org/problem?id=3070 nyoj: http://acm.nyist.n ...

  4. poj 3070 Fibonacci(矩阵快速幂,简单)

    题目 还是一道基础的矩阵快速幂. 具体的居者的幂公式我就不明示了. #include<stdio.h> #include<string.h> #include<algor ...

  5. POJ 3070 Fibonacci(矩阵快速幂)

    题目链接 题意 : 用矩阵相乘求斐波那契数的后四位. 思路 :基本上纯矩阵快速幂. #include <iostream> #include <cstring> #includ ...

  6. poj 2778 AC自动机+矩阵快速幂

    题目链接:https://vjudge.net/problem/POJ-2778 题意:输入n和m表示n个病毒,和一个长为m的字符串,里面只可以有'A','C','G','T' 这四个字符,现在问这个 ...

  7. Scout YYF I POJ - 3744(概率dp + 矩阵快速幂)

    题意: 一条路上有n个地雷,你从1开始走,单位时间内有p的概率走一步,1-p的概率走两步,问安全通过这条路的概率 解析: 很容易想到 dp[i] = p * dp[i-1] + (1 - p) * d ...

  8. POJ 3070 Fibonacci 【矩阵快速幂】

    <题目链接> Description In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 ...

  9. POJ 3734 Blocks (矩阵快速幂)

    题目链接 Description Panda has received an assignment of painting a line of blocks. Since Panda is such ...

随机推荐

  1. 【洛谷 p3368】模板-树状数组 2(数据结构)

    题目:已知一个数列,你需要进行下面两种操作:1.将某区间每一个数数加上x:2.求出某一个数的和. 解法:树状数组+前缀和优化.数组中每位存和前一位的数的差,这样区间修改只用改两位,单点询问就是求前缀和 ...

  2. 使用PowerQuery操作OData数据

             Excel是我们耳熟的办公软件.PowerQuery是一个允许连接多种数据源的Excel插件.它能从一个网页上智能查询数据.使用PowerQuery能合并数据集使用join,merg ...

  3. java LinkedBlockingQueue和ConcurrentLinkedQueue的区别

    实现上看,两者都继承于AbstractQueue,但是ConcurrentLinkedQueue实现了Queue,而LinkedBlockingQueue实现了BlockingQueue,Blocki ...

  4. linux线程控制&线程分离

    线程概念 线程,有时被称为轻量级进程(Lightweight Process,LWP),是程序执行流的最小单元. 线程是程序中一个单一的顺序控制流程.进程内一个相对独立的.可调度的执行单元,是系统独立 ...

  5. [WP8] 使用ApplicationMenu与使用者互动

    [WP8] 使用ApplicationMenu与使用者互动 范例下载 范例程序代码:点此下载 功能说明 使用过Lumia系列手机的开发人员,对于内建的相机功能相信都很熟悉.在Lumia内建的相机功能中 ...

  6. python基础之基本算法和装饰器

    1.冒泡排序 关于冒泡排序实现大小比较,大索引会向后移动,这次循环将最大数值直接移动至最后. li = [,,,,] ): ]: temp = li[i] li[i] = li[i + ] li[i ...

  7. javascript中静态方法、实例方法、内部方法和原型的一点见解

    1.静态方法的定义 var BaseClass = function() {}; // var BaseClass=new Function(); BaseClass.f1 = function(){ ...

  8. SharePoint 服务器端对象模型操作文档库(上传/授权/查看权限)

    简介:上传文档到文档库,并对项目级授权,查看项目级权限方法         //在列表根目录下创建文件夹 public static string CreatFolderToSPDocLib(stri ...

  9. 在SharePoint中无代码开发InfoPath应用: 一个测试Web Service的工具

    这是这个系列的第一篇,介绍一个小工具,主要是用在Web Service测试的. 因为为了用一点高级的东西,就免不了和web service打交道. 你可以使用按照KB819267来修改web.conf ...

  10. Sharepoint学习笔记—习题系列--70-573习题解析 -(Q88-Q90)

    Question 88You have a Microsoft .NET Framework console application that uses the SharePoint client o ...