【原/转】【boost】智能指针使用规则以及介绍
智能指针机制跟Objective-C里面的retainCount引用计数有着相同的原理,当某个对象的引用计数为0是执行delete操作,类似于autorelease
初学者在使用智能指针时,很多情况下可以把它当做标准C++中的T*来理解。比如:
typedef boost::shared_ptr<CMyLargeClass> CMyLargeClassPtr; std::vector<CMyLargeClassPtr> vec; vec.push_back( CMyLargeClassPtr(new CMyLargeClass("bigString")) );
这里的CMyLargeClassPtr可以用CMyLargeClass *来理解,但是在使用上还是有一些区别的,请看下面:
先看一个例子:
许多容器类,包括STL,都需要拷贝操作(例如,我们插入一个存在的元素到list,vector,或者container。)当拷贝操作是非常销毁资源的时候(这些操作时必须的),典型的操作就是使用容器指针。
std::vector<CMyLargeClass *> vec; vec.push_back( new CMyLargeClass("bigString") ); |
将内存管理的任务抛给调用者,我们能够使用shared_ptr来实现。
typedef boost::shared_ptr<CMyLargeClass> CMyLargeClassPtr; std::vector<CMyLargeClassPtr> vec; vec.push_back( CMyLargeClassPtr(new CMyLargeClass("bigString")) ); |
使用智能指针的一些操作会产生错误(突出的事那些不可用的引用计数器,一些对象太容易释放,或者根本释放不掉)。Boost增强了这种安全性,处理了所有潜在存在的危险,所以我们要遵循以下几条规则使我们的代码更加安全。
下面几条规则是你应该必须遵守的:
规则一:赋值和保存 —— 对于智能指针来说,赋值是立即创建一个实例,并且保存在那里。现在智能指针拥有一个对象,你不能手动释放它,或者取走它,这将帮助你避免意外地释放了一个对象,但你还在引用它,或者结束一个不可用的引用计数器。
规则二:_ptr<T> 不是T* —— 恰当地说,不能盲目地将一个T* 和一个智能指针类型T相互转换。意思是:
· 当创建一个智能指针的时候需要明确写出 __ptr<T> myPtr(new T)。
· 不能将T*赋值给一个智能指针。
· 不能写ptr = NULL,应该使用ptr.reset()。
· 重新找回原始指针,使用ptr.get(),不必释放这个指针,智能指针会去释放、重置、赋值。使用get()仅仅通过函数指针来获取原始指针。
· 不能通过T*指向函数指针来代表一个__ptr<T>,需要明确构造一个智能指针,或者说将一个原始指针的所有权给一个指针指针。(见规则三)
· 这是一种特殊的方法来认定这个智能指针拥有的原始指针。不过在Boost:smart pointer programming techniques 举例说明了许多通用的情况。
规则三:非循环引用 —— 如果有两个对象引用,而他们彼此都通过一个一个引用指针计数器,那么它们不能释放,Boost 提供了weak_ptr来打破这种循环引用(下面介绍)。
规则四:非临时的 share_ptr —— 不能够造一个临时的share_ptr来指向它们的函数,应该命名一个局部变量来实现。(这可以使处理以外更安全,Boost share_ptr best practices 有详细解说)。
7、 循环引用
引用计数器是一种便利的资源管理机制,它有一个基本回收机制。但循环引用不能够自动回收,计算机很难检测到。一个最简单的例子,如下:
struct CDad; struct CChild; typedef boost::shared_ptr<CDad> CDadPtr; typedef boost::shared_ptr<CChild> CChildPtr; struct CDad : public CSample { CChildPtr myBoy; }; struct CChild : public CSample { CDadPtr myDad; }; // a "thing" that holds a smart pointer to another "thing": CDadPtr parent(new CDadPtr); CChildPtr child(new CChildPtr); // deliberately create a circular reference: parent->myBoy = child; child->myDad = dad; // resetting one ptr... child.reset(); |
parent 仍然引用CDad对象,它自己本身又引用CChild。整个情况如下图所示:
如果我们调用dad.reset(),那么我们两个对象都会失去联系。但这种正确的离开这个引用,共享的指针看上去没有理由去释放那两个对象,我们不能够再访问那两个对象,但那两个对象的确还存在,这是一种非常严重的内存泄露。如果拥有更多的这种对象,那么将由更多的临界资源不能正常释放。
如果不能解决好共享智能指针的这种操作,这将是一个严重的问题(至少是我们不可接受的)。因此我们需要打破这种循环引用,下面有三种方法:
A、 当只剩下最后一个引用的时候需要手动打破循环引用释放对象。
B、 当Dad的生存期超过Child的生存期的时候,Child需要一个普通指针指向Dad。
C、 使用boost::weak_ptr打破这种循环引用。
方法A和B并不是一个完美的解决方案,但是可以在不使用weak_ptr的情况下让我们使用智能指针
============================================================
更多详细内容请看博客http://blog.csdn.net/dongguan131/article/details/6683843
与shared_ptr相类似的是scoped_ptr、auto_ptr。boost::scoped_ptr和std::auto_ptr非常类似,是一个简单的智能指针,二者都能够保证在离开作用域后对象被释放。
#include <string>
#include <iostream>
#include <boost/scoped_ptr.hpp> class implementation
{
public:
~implementation() { std::cout <<"destroying implementation\n"; }
void do_something() { std::cout << "did something\n"; }
}; void test()
{
boost::scoped_ptr<implementation> impl(new implementation());
impl->do_something();
} void main()
{
std::cout<<"Test Begin ... \n";
test();
std::cout<<"Test End.\n";
}
Scoped_ptr
该代码的输出结果是:
Test Begin ... |
可以看到:当implementation类离其开impl作用域的时候,会被自动删除,这样就会避免由于忘记手动调用delete而造成内存泄漏了。
boost::scoped_ptr的实现和std::auto_ptr非常类似,都是利用了一个栈上的对象去管理一个堆上的对象,从而使得堆上的对象随着栈上的对象销毁时自动删除。不同的是,boost::scoped_ptr有着更严格的使用限制——不能拷贝。这就意味着:boost::scoped_ptr指针是不能转换其所有权的。
- 不能转换所有权
boost::scoped_ptr所管理的对象生命周期仅仅局限于一个区间(该指针所在的"{}"之间),无法传到区间之外,这就意味着boost::scoped_ptr对象是不能作为函数的返回值的(std::auto_ptr可以)。 - 不能共享所有权
这点和std::auto_ptr类似。这个特点一方面使得该指针简单易用。另一方面也造成了功能的薄弱——不能用于stl的容器中。 - 不能用于管理数组对象
由于boost::scoped_ptr是通过delete来删除所管理对象的,而数组对象必须通过deletep[]来删除,因此boost::scoped_ptr是不能管理数组对象的,如果要管理数组对象需要使用boost::scoped_array类。
【原/转】【boost】智能指针使用规则以及介绍的更多相关文章
- 基于C/S架构的3D对战网络游戏C++框架_05搭建系统开发环境与Boost智能指针、内存池初步了解
本系列博客主要是以对战游戏为背景介绍3D对战网络游戏常用的开发技术以及C++高级编程技巧,有了这些知识,就可以开发出中小型游戏项目或3D工业仿真项目. 笔者将分为以下三个部分向大家介绍(每日更新): ...
- Boost智能指针-基础知识
简单介绍 内存管理一直是 C++ 一个比較繁琐的问题,而智能指针却能够非常好的解决问题,在初始化时就已经预定了删除.排解了后顾之忧.1998年修订的第一版C++标准仅仅提供了一种智能指针:std::a ...
- [转] Boost智能指针——scoped_ptr
http://www.cnblogs.com/tianfang/archive/2008/09/15/1291050.html boost::scoped_ptr和std::auto_ptr非常类似, ...
- boost 智能指针intrusive_ptr
boost::intrusive_ptr一种“侵入式”的引用计数指针,它实际并不提供引用计数功能,而是要求被存储的对象自己实现引用计数功能,并提供intrusive_ptr_add_ref和intru ...
- Boost智能指针使用总结
内存管理是一个比较繁琐的问题,C++中有两个实现方案: 垃圾回收机制和智能指针.垃圾回收机制因为性能等原因不被C++的大佬们推崇, 而智能指针被认为是解决C++内存问题的最优方案. 1. 智能指针定义 ...
- Boost智能指针——weak_ptr
循环引用: 引用计数是一种便利的内存管理机制,但它有一个很大的缺点,那就是不能管理循环引用的对象.一个简单的例子如下: #include <string>#include <iost ...
- boost智能指针总结
智能指针是一种具备指针类似行为的对象,当不在需要它的时候自动删除其引用的c++对象.直接点说就是自动析构C++对象. boost提供了6种智能指针,如下所示: scoped_ptr <boost ...
- Boost智能指针——scoped_ptr
boost::scoped_ptr和std::auto_ptr非常类似,是一个简单的智能指针,它能够保证在离开作用域后对象被自动释放. 上一段代码,以及其输出: #include <string ...
- [原][C++]拒绝智能指针与指针混用,常见智能指针问题
公司一个非专科的程序在开发过程中有些毛躁,但是又想使用些新学的技术 这天他正调试呢,发现有一个BUG怎么也找不到原因. 用的好好的内存怎么就突然被删除了呢,好好的指针,怎么就访问越界了呢 没办法,他只 ...
随机推荐
- 个人对joomla3.2x和joomla2.5X浅薄看法
很久没有写joomla文章了,发现想写的东西还是挺多的,后面抽时间补回来,其实更多还是php的一些东西.joomla3.0以后系统改变挺大,后台都是用bootstrap作为主题,个人对这个无爱,因为他 ...
- Surface Shader
Surface Shader: (1)必须放在SubShdader块,不能放在Pass内部: (2)#pragma sufrace surfaceFunction lightModel [option ...
- 斜堆(三)之 Java的实现
概要 前面分别通过C和C++实现了斜堆,本章给出斜堆的Java版本.还是那句老话,三种实现的原理一样,择其一了解即可. 目录1. 斜堆的介绍2. 斜堆的基本操作3. 斜堆的Java实现(完整源码)4. ...
- UML系列04之 UML时序图
概要 本章对UML的时序图进行介绍,主要内容包括:时序图介绍时序图组成 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3523355.html 时序图介绍 ...
- Java 8的新并行API - 魅力与炫目背后
这是一篇译文,原文链接见这里. 本文同时发表在ImportNew上,转载请注明出处. 我很擅长同时处理多项任务.就算是在写这篇博客的此刻,我仍然在为昨天在聚会上发表了一个让大家都感到诧异的评论而觉得尴 ...
- OpenCV开发环境配置-Windows/MinGW/Clion/CMake
临时更换成了TDM-GCC,和mingw类似,这里只是声明一下. 由于opencv下载下来的.exe安装包实际上是没有mingw(gcc)匹配的/动静态库,因此这些东西需要我们自己使用mingw编译. ...
- 谈Mysql索引
myisam和innodb的索引有什么区别? 两个索引都是B+树索引,但是myisam的表存储和索引存储是分开的,索引存储中存放的是表的地址.而innodb表存储本身就是一个B+树,它是用主键来做B+ ...
- C#动态属性(.NET Framework4.5支持)
获取方法: /* 使用方法: 1. 在web.config 的<configSections> 节点中添加 <section name="customConfigs&quo ...
- SQL 表变量和临时表
SQL 表变量和临时表 表变量:存储在内存中,作用域是脚本的执行过程中,脚本执行完毕之后就会释放内存,适合短时间内存储数据量小的数据集. 优点:使用灵活,使用完之后立即释放,不占用物理存储空间 缺点: ...
- css 布局absolute与relative的区别
absolute:当使用时,表示在文档流中没有实际存在位置(浮动),在不设置任何方位值时,只能按兵不动,当设置了方位值之后,会紧接着去寻找距离最近的能够将它包含住的父级元素,然后进行定位. relat ...