转载地址,请珍惜作者的劳动成果,转载请注明出处:http://www.open-open.com/lib/view/open1337176725619.html

如果你使用Java语言进行开发,对于定时执行任务这样的需求,自然而然会想到使用Timer和TimerTask完成任务,我最近就使用 Timer和TimerTask完成了一个定时执行的任务,实现得没有问题,但当在TimerTaks的run()方法中使用 Thread.sleep()方式时,可能会出现奇怪的现象,好像Timer失效了,网上查了一下,倒是有人遇到了相同的问题,但是并没有找到一篇解释为什么会出现这种情况,期待有某位达人能够分析清楚这个问题。

遇到了这样的问题,始终让我不爽,于是看了一下Timer的源码,先将了解到的内容整理如下,接下来再看看Thread.sleep()的源码,看能否找到问题所在。

在Java中,与定时任务执行相关的类很少,只有Timer、TimerTask、TimerThread、TaskQueue几个,其中每个类的职责大致如下:

Timer:一个Task的调度类,和TimerTask一样,暴露给最终用户使用的类,通过schedule方法安排Task的执行计划。该类通过TaskQueue和TimerThread类完成Task的调度。

TimerTask:实现Runnable接口,表明每一个任务均为一个独立的线程。通过run()方法提供用户定制自己任务。该类有一个比较重要的成员变量nextExecutionTime ,表示下一次执行该任务的时间。以后会看到,Timer机制就是靠这个值安排Task执行的。

TimerThread:继承于Thread,是真正执行Task的类。

TaskQueue:一个存储Task的数据结构,内部由一个最小堆实现,堆的每个成员为一个TimeTask,每个Task依靠其 nextExecutionTime值进行排序,也就是说,nextExecutionTime最小的任务在队列的最前端,从而能够现实最早执行。

要想使用Timer,用户只需要了解Timer和TimerTask,下面现已一个最基本的Timer和TimerTask使用案例入手,来看一下Timer内部的实现原理。

import java.util.Timer;

import java.util.TimerTask;

import org.junit.Test;

class TestTimerTask extends TimerTask {

  @Override

  public void run() {

    System.out.println("TestTimerTask is running......");

  }

}

public class TimerTaskTest {

  @Test

  public void testTimerTask() {

    Timer timer = new Timer();

    timer.schedule(new TestTimerTask(), 0, 10);

  }

}

  

上面的代码是一个典型的Timer&TimerTask的应用,下面先来看一下new Timer()干了什么事,其源码如下:

public Timer(String name) {

thread.setName(name);    //thread为TimerThread实例。

thread.start();

}

从上面的源代码可以知道,创建Timer对象的同时也启动了TimerThread线程。下面来看看TimerThread干了什么事:

public void run() {

        try {

            mainLoop();                 //线程真正执行的代码在这个私有方法中

        } finally {

            // Someone killed this Thread, behave as if Timer cancelled

            synchronized(queue) {

                newTasksMayBeScheduled = false;

                queue.clear();  // Eliminate obsolete references

            }

        }

}

  接着来看看私有方法mainLoop()干了什么事:

private void mainLoop() {

        while (true) {

            try {

                TimerTask task;

                boolean taskFired;       //是否已经到达Task的执行时间,如果已经到达,设置为true,否则置为false

                synchronized(queue) {

                    // Wait for queue to become non-empty

                    while (queue.isEmpty() && newTasksMayBeScheduled)

                        queue.wait();                //由此可以看出,Timer通过wait & notify 方法安排线程之间的同步

                    if (queue.isEmpty())

                        break; // Queue is empty and will forever remain; die

                    // Queue nonempty; look at first evt and do the right thing

                    long currentTime, executionTime;

                    task = queue.getMin();

                    synchronized(task.lock) {

                        if (task.state == TimerTask.CANCELLED) {

                            queue.removeMin();

                            continue;  // No action required, poll queue again

                        }

                        currentTime = System.currentTimeMillis();

                        executionTime = task.nextExecutionTime;

                        if (taskFired = (executionTime<=currentTime)) {        //Task的执行时间已到,设置taskFired为true

                            if (task.period == 0) { // Non-repeating, remove

                                queue.removeMin();        //移除队列中的当前任务

                                task.state = TimerTask.EXECUTED;

                            } else { // Repeating task, reschedule

                                queue.rescheduleMin(         //重新设置任务的下一次执行时间

                                  task.period<0 ? currentTime   - task.period

                                                : executionTime + task.period);

                            }

                        }

                    }

                    if (!taskFired) // Task hasn't yet fired; wait

                        queue.wait(executionTime - currentTime);    //还没有执行时间,通过wait等待特定时间

                }

                if (taskFired)  // Task fired; run it, holding no locks

                    task.run();    //已经到达执行时间,执行任务

            } catch(InterruptedException e) {

            }

        }

}

  

也就是说,一旦创建了Timer类的实例,就一直存在一个循环在遍历queue中的任务,如果有任务的话,就通过thread去执行该任务,否则线程通过wait()方法阻塞自己,由于没有任务在队列中,就没有必要继续thread中的循环。

上面提到,如果Timer的任务队列中不包含任务时,Timer中的TimerThread线程并不会执行,接着来看看为Timer添加任务后会出现怎样的情况。为Timer添加任务就是timer.schedule()干的事,schedule()方法直接调用Timer的私有方法 sched(),sched()是真正安排Task的地方,其源代码如下:

private void sched(TimerTask task, long time, long period) {

        if (time < 0)

            throw new IllegalArgumentException("Illegal execution time.");

        synchronized(queue) {

            if (!thread.newTasksMayBeScheduled)

                throw new IllegalStateException("Timer already cancelled.");

            synchronized(task.lock) {

                if (task.state != TimerTask.VIRGIN)             //我喜欢virgin状态,其他状态表明该Task已经被schedule过了

                    throw new IllegalStateException(

                        "Task already scheduled or cancelled");

                 //设置Task下一次应该执行的时间, 由System.currentTimeMillis()+/-delay得到

                task.nextExecutionTime = time;               

                task.period = period;

                task.state = TimerTask.SCHEDULED;

            }

            queue.add(task);            //queue为TaskQueue类的实例,添加任务到队列中

            if (queue.getMin() == task)        //获取队列中nextExecutionTime最小的任务,如果与当前任务相同

                queue.notify();                         //还记得前面看到的queue.wait()方法么

        }

}

  

不要奇怪,为什么要判断queue.getMin() == task时,才通过queue.notify()恢复执行。因为这种方式已经满足所有的唤醒要求了。

如果安排当前Task之前queue为空,显然上述判断为true,于是mainLoop()方法能够继续执行。

如果安排当前Task之前queue不为空,那么mainLoop()方法不会一直被阻塞,不需要notify方法调用。

调用该方法还有一个好处是,如果当前安排的Task的下一次执行时间比queue中其余Task的下一次执行时间都要小,通过notify方法可以提前打开queue.wait(executionTime - currentTime)方法对mainLoop()照成的阻塞,从而使得当前任务能够被优先执行,有点抢占的味道。

上述分析可以看出,Java中Timer机制的实现仅仅使用了JDK中的方法,通过wait & notify机制实现,其源代码也非常简单,但可以想到的是这种实现机制会对开发者造成一种困扰,sched()方法中可以看出,对于一个重复执行的任务,Timer的实现机制是先安排Task下一次执行的时间,然后再启动Task的执行,如果Task的执行时间大于下一次执行的间隔时间,可能出现不可预期的错误。当然,了解了Timer的实现原理,修改这种实现方式也就非常简单了。

Timer&TimerTask原理分析的更多相关文章

  1. Java并发编程笔记之Timer源码分析

    timer在JDK里面,是很早的一个API了.具有延时的,并具有周期性的任务,在newScheduledThreadPool出来之前我们一般会用Timer和TimerTask来做,但是Timer存在一 ...

  2. Java Timer定时器原理

    做项目很多时候会用到定时任务,比如在深夜,流量较小的时候,做一些统计工作.早上定时发送邮件,更新数据库等.这里可以用Java的Timer或线程池实现.Timer可以实现,不过Timer存在一些问题.他 ...

  3. RocketMQ延迟消息的代码实战及原理分析

    RocketMQ简介 RocketMQ是一款开源的分布式消息系统,基于高可用分布式集群技术,提供低延时的.高可靠.万亿级容量.灵活可伸缩的消息发布与订阅服务. 它前身是MetaQ,是阿里基于Kafka ...

  4. web压测工具http_load原理分析

    一.前言 http_load是一款测试web服务器性能的开源工具,从下面的网址可以下载到最新版本的http_load: http://www.acme.com/software/http_load/ ...

  5. 消息队列NetMQ 原理分析2-IO线程和完成端口

    消息队列NetMQ 原理分析2-IO线程和完成端口 前言 介绍 目的 IO线程 初始化IO线程 Proactor 启动Procator线程轮询 处理socket 获取超时时间 从完成端口获取处理完的状 ...

  6. go-common-pool设计原理分析

    common-pool: 对于一些对象的频繁创建会带来很大的系统开销,并且需要对对象数量进行控制来降低资源消耗,比如数据库连接,线程等 common-pool采用了缓存思想来解决这个问题,预先把一些对 ...

  7. java timer timertask mark

    其实就Timer来讲就是一个调度器,而TimerTask呢只是一个实现了run方法的一个类,而具体的TimerTask需要由你自己来实现,例如这样: 1 2 3 4 5 6 Timer timer = ...

  8. DexHunter的原理分析和使用说明(二)

    本文博客地址:http://blog.csdn.net/qq1084283172/article/details/53715325 前面的博文<Android通用脱壳工具DexHunter的原理 ...

  9. Handler系列之原理分析

    上一节我们讲解了Handler的基本使用方法,也是平时大家用到的最多的使用方式.那么本节让我们来学习一下Handler的工作原理吧!!! 我们知道Android中我们只能在ui线程(主线程)更新ui信 ...

随机推荐

  1. 【bzoj1853】 Scoi2010—幸运数字

    http://www.lydsy.com/JudgeOnline/problem.php?id=1853 (题目链接) 今天考试考了容斥,结果空知道结论却不会写→_→ 题意 求区间中不含6,8两个数字 ...

  2. [NOIP2008] 提高组 洛谷P1006 传纸条

    题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...

  3. JBoss7.1配置外网访问

    在JBoss7.1目录jboss-as-7.1.1.Final/standalone/configuration下找到standalone.xml,找到以下的节点,在尝试了以下两种方法: 1. < ...

  4. 如果您想省略JS里的分号,了解一下JS的分号插入原理吧

    仅在}之前.一个或多个换行之后和程序输入的结尾被插入 也就是说你只能在一行.一个代码块和一段程序结束的地方省略分号. 也就是说你可以写如下代码 function square(x) { var n = ...

  5. poj1631Bridging signals(最长单调递增子序列 nlgn)

    Bridging signals Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12251   Accepted: 6687 ...

  6. IOCP I/O完成端口(了解)

    IOCP(I/O Completion Port,I/O完成端口)是性能最好的一种I/O模型.它是应用程序使用线程池处理异步I/O请求的一种机制.在处理多个并发的异步I/O请求时,以往的模型都是在接收 ...

  7. thinkphp 3.2 单入口 多模块 不能加载index控制器问题

    菜鸟一个,大神不用看,很喜欢单入口 多模块的方式,所以想自己设置下,结果看很多教程没看懂,也看到有人在问这个问题,分享下我的项目名称是app,首先运行官方的index.php文件,app目录下生成了三 ...

  8. 检测端口状态的python脚本

    #!/usr/bin/env python import os,subprocess,socket,time,sys from urllib import urlencode from socket ...

  9. 基于REST架构的Web Service设计

    来自: http://www.williamlong.info/archives/1728.html 先前我曾经介绍过利用Apache Axis实现基于SOAP的Web Service实现技术和相关代 ...

  10. 高性能的分布式内存对象缓存系统Memcached

    Memcached概述   什么是Memcached? 先看看下面几个概念: Memory:内存存储,不言而喻,速度快,对于内存的要求高,不指出的话所缓存的内容非持久化.对于CPU要求很低,所以常常采 ...