Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.

Each number in C may only be used once in the combination.

Note:

  • All numbers (including target) will be positive integers.
  • Elements in a combination (a1, a2, … , ak) must be in non-descending order. (ie, a1a2 ≤ … ≤ ak).
  • The solution set must not contain duplicate combinations.

For example, given candidate set 10,1,2,7,6,1,5 and target 8,
A solution set is:
[1, 7]
[1, 2, 5]
[2, 6]
[1, 1, 6]

解题思路:

修改上题代码,将DFS宽度设置成2即可,注意使用Set,防止重复,JAVA实现如下:

public List<List<Integer>> combinationSum2(int[] candidates, int target) {
Set<List<Integer>> list = new HashSet<List<Integer>>();
Arrays.sort(candidates);
dfs(list, candidates, 0, target, 0);
return new ArrayList<List<Integer>>(list);
}
static List<Integer> list2 = new ArrayList<Integer>();
static void dfs(Set<List<Integer>> list, int[] array, int result,int target, int depth) {
if (result == target) {
list.add(new ArrayList<Integer>(list2));
return;
}
else if (depth >= array.length || result > target)
return;
for (int i = 0; i <= 1; i++) {
for (int j = 0; j < i; j++)
list2.add(array[depth]);
dfs(list, array, result + array[depth] * i, target, depth+1);
for (int j = 0; j < i; j++)
list2.remove(list2.size() - 1);
}
}

结果453 ms,效率略低,因此换掉Set,用一个变量计算每次DFS的宽度,JAVA实现如下:

public List<List<Integer>> combinationSum2(int[] candidates, int target) {
ArrayList<List<Integer>> list = new ArrayList<List<Integer>>();
Arrays.sort(candidates);
dfs(list, candidates, 0, target, 0);
return list;
}
static List<Integer> list2 = new ArrayList<Integer>();
static void dfs(ArrayList<List<Integer>> list, int[] array, int result,int target, int depth) {
if (result == target) {
list.add(new ArrayList<Integer>(list2));
return;
}
else if (depth >= array.length || result > target)
return;
int step=1;
while(depth<array.length-1&&array[depth]==array[depth+1]){
depth++;
step++;
}
for (int i = 0; i <= step; i++) {
for (int j = 0; j < i; j++)
list2.add(array[depth]);
dfs(list, array, result + array[depth] * i, target, depth+1);
for (int j = 0; j < i; j++)
list2.remove(list2.size() - 1);
}
}

Java for LeetCode 040 Combination Sum II的更多相关文章

  1. LeetCode 040 Combination Sum II

    题目要求:Combination Sum II Given a collection of candidate numbers (C) and a target number (T), find al ...

  2. Java for LeetCode 216 Combination Sum III

    Find all possible combinations of k numbers that add up to a number n, given that only numbers from ...

  3. [array] leetcode - 40. Combination Sum II - Medium

    leetcode - 40. Combination Sum II - Medium descrition Given a collection of candidate numbers (C) an ...

  4. [LeetCode] 40. Combination Sum II 组合之和 II

    Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...

  5. 【leetcode】Combination Sum II

    Combination Sum II Given a collection of candidate numbers (C) and a target number (T), find all uni ...

  6. [leetcode]40. Combination Sum II组合之和之二

    Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...

  7. [LeetCode] 40. Combination Sum II 组合之和之二

    Given a collection of candidate numbers (candidates) and a target number (target), find all unique c ...

  8. leetcode 40 Combination Sum II --- java

    Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in ...

  9. 【LeetCode】040. Combination Sum II

    题目: Given a collection of candidate numbers (C) and a target number (T), find all unique combination ...

随机推荐

  1. 10 个免费的 jQuery 可视化编辑器插件

    富文本编辑器,也就是所见即所得的 HTML 编辑器,是网站一个非常重要的组件,特别是对于一些内容发布网站来说.本文介绍 10 个基于 jQuery 的可视化文本编辑器. MarkitUp markIt ...

  2. url的编码问题

    JQuery中 编码 var url = 'folder/index.html?param=#23dd&noob=yes'; var encodedUrl = encodeURICompone ...

  3. Yii2的view需要链接跳转

    添加 use yii\helpers\Url; view中的连接 <?= Url::toRoute('post/index');?>//post为你的当前控制器名,index为view模版

  4. BIEE 创建一个简单的分析(2)

    步骤: 1.如果BIEE安装在本机,直接登录http://localhost:9704/analytics/ 点击右上方导航菜单中的“新建->分析” 2.选择上节创建的RPD文件中的SCOTT主 ...

  5. spring - ioc和aop

    1.程序中为什么会用到spring的ioc和aop 2.什么是IOC,AOP,以及使用它们的好处,即详细回答了第一个问题 3.原理 关于1: a:我们平常使用对象的时候,一般都是直接使用关键字类new ...

  6. 高斯混合聚类及EM实现

    一.引言 我们谈到了用 k-means 进行聚类的方法,这次我们来说一下另一个很流行的算法:Gaussian Mixture Model (GMM).事实上,GMM 和 k-means 很像,不过 G ...

  7. 【poj1745】 Divisibility

    http://poj.org/problem?id=1745 (题目链接) 题意 给出n串数,可以在其两两之间添加+或-,判断是否存在某种方案使得出的表达式的答案可以整除k. Solution 水题一 ...

  8. workon在zsh中不起作用

    先装了workon,然后装了zsh,发现在zsh里不起作用 翻了一下网上没有解答,就看了看bashrc文件,发现一句 source /usr/local/bin/virtualenvwrapper.s ...

  9. Ubuntu学习总结-01 用VMware 8安装Ubuntu 12.04详细过程

    1 Ubuntu 下载地址 http://www.ubuntu.com/download/desktop 2 安装Ubuntu 转载用VMware 8安装Ubuntu 12.04详细过程 http:/ ...

  10. Android模拟器端口被占用问题的解决办法

    一.问题描述 今天在Eclipse中运行Android项目时遇到"The connection to adb is down, and a severe error has occured& ...