Opencv step by step - 阈值化
Opencv里面的阈值化做起来比较简单,只需要一个函数即可:
/* Applies fixed-level threshold to grayscale image.
This is a basic operation applied before retrieving contours */
CVAPI(double) cvThreshold( const CvArr* src, CvArr* dst,
double threshold, double max_value,
int threshold_type );
这里是根据threadshould来决定处理源图像的阈值,使用threshold_type 来决定如何处理。
这里有5种选择,详见:
http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/threshold/threshold.html
下面来实践一下:
#include <cv.h>
#include <highgui.h>
#include <stdio.h> /* CV_IMPL void
cvAddWeighted( const CvArr* srcarr1, double alpha,
const CvArr* srcarr2, double beta,
double gamma, CvArr* dstarr )
{
cv::Mat src1 = cv::cvarrToMat(srcarr1), src2 = cv::cvarrToMat(srcarr2),
dst = cv::cvarrToMat(dstarr);
CV_Assert( src1.size == dst.size && src1.channels() == dst.channels() );
cv::addWeighted( src1, alpha, src2, beta, gamma, dst, dst.type() );
} void cv::addWeighted( InputArray src1, double alpha, InputArray src2,
double beta, double gamma, OutputArray dst, int dtype )
{
double scalars[] = {alpha, beta, gamma};
arithm_op(src1, src2, dst, noArray(), dtype, getAddWeightedTab(), true, scalars);
} */ void sum_rgb(IplImage* src, IplImage *dst, int type)
{
IplImage *r = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
IplImage *g = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1);
IplImage *b = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1); //split the image to three color planes
cvSplit(src, r, g, b, NULL); IplImage *s = cvCreateImage(cvGetSize(src), IPL_DEPTH_8U, 1); /*
void cvAddWeighted(const CvArr* src1, double alpha,
const CvArr* src2, double beta, double gamma, CvArr* dst)
dst = src1 * alpha + src2 * beta + gamma
*/
cvAddWeighted(r, 1.0/3.0, g, 1.0/3.0, 0.0, s);
cvAddWeighted(s, 1.0/1.0, b, 1.0/3.0, 0.0, s); cvThreshold(s, dst, 100, 255, type);
cvReleaseImage(&r);
cvReleaseImage(&g);
cvReleaseImage(&b);
cvReleaseImage(&s); } int main(int argc, char **argv)
{
cvNamedWindow("HI", 1);
IplImage *src = cvLoadImage(argv[1]);
IplImage *dst = cvCreateImage(cvGetSize(src), src->depth, 1); const int methods[5] = {CV_THRESH_BINARY, CV_THRESH_BINARY_INV,
CV_THRESH_TRUNC, CV_THRESH_TOZERO_INV,
CV_THRESH_TOZERO};
const char* methods_str[5] = {"CV_THRESH_BINARY", "CV_THRESH_BINARY_INV",
"CV_THRESH_TRUNC", "CV_THRESH_TOZERO_INV",
"CV_THRESH_TOZERO"}; for(int i = 0; i < 5; i++) {
sum_rgb(src, dst, methods[i]);
cvShowImage(methods_str[i], dst);
} while(1) { if(cvWaitKey(10) & 0x7f == 27)
break; } cvDestroyWindow("HI");
cvReleaseImage(&src);
cvReleaseImage(&dst); }
这里的关键函数是:
cvThreshold(s, dst, 100, 255, type);
效果如下:
Opencv step by step - 阈值化的更多相关文章
- OpenCV阈值化处理
图像的阈值化就是利用图像像素点分布规律,设定阈值进行像素点分割,进而得到图像的二值图像.图像阈值化操作有多种方法,常用方法有经典的OTSU.固定阈值.自适应阈值.双阈值及半阈值化操作.这里对各种阈值化 ...
- Opencv step by step - 自适应阈值
上个博客提到的阈值化只是针对图像全局进行阈值化,opencv提供了一个更好的函数cvAdaptiveThreshold,可以做到局部特征的阈值化,这样一来, 整个图像的信息可以被更好的提取. #inc ...
- 【学习opencv第七篇】图像的阈值化
图像阈值化的基本思想是,给定一个数组和一个阈值,然后根据数组中每个元素是低于还是高于阈值而进行一些处理. cvThreshold()函数如下: double cvThreshold( CvArr* s ...
- opencv学习之路(13)、图像阈值化threshold
一.图像阈值化简介 二.固定阈值 三.自适应阈值 #include<opencv2/opencv.hpp> using namespace cv; void main(){ Mat src ...
- opencv python 图像二值化/简单阈值化/大津阈值法
pip install matplotlib 1简单的阈值化 cv2.threshold第一个参数是源图像,它应该是灰度图像. 第二个参数是用于对像素值进行分类的阈值, 第三个参数是maxVal,它表 ...
- opencv之图像阈值化处理
一.函数简介 1.threshold-图像简单阈值化处理 函数原型:threshold(src, thresh, maxval, type, dst=None) src:图像矩阵 thresh:阈值 ...
- OpenCV3编程入门笔记(4)腐蚀、膨胀、开闭运算、漫水填充、金字塔、阈值化、霍夫变换
腐蚀erode.膨胀dilate 腐蚀和膨胀是针对图像中的白色部分(高亮部分)而言的,不是黑色的.除了输入输出图像外,还需传入模板算子element,opencv中有三种可以选择:矩形MORPH_RE ...
- WPF Step By Step 自定义模板
WPF Step By Step 自定义模板 回顾 上一篇,我们简单介绍了几个基本的控件,本节我们将讲解每个控件的样式的自定义和数据模板的自定义,我们会结合项目中的具体的要求和场景来分析,给出我们实现 ...
- e2e 自动化集成测试 架构 实例 WebStorm Node.js Mocha WebDriverIO Selenium Step by step (二) 图片验证码的识别
上一篇文章讲了“e2e 自动化集成测试 架构 京东 商品搜索 实例 WebStorm Node.js Mocha WebDriverIO Selenium Step by step 一 京东 商品搜索 ...
- 灰度图像阈值化分割常见方法总结及VC实现
转载地址:http://blog.csdn.net/likezhaobin/article/details/6915755 在图像处理领域,二值图像运算量小,并且能够体现图像的关键特征,因此被广泛使用 ...
随机推荐
- nginx服务器中的安全配置
一.关闭SELinux 安全增强型Linux(SELinux)的是一个Linux内核的功能,它提供支持访问控制的安全政策保护机制. 但是,SELinux带来的附加安全性和使用复杂性上不成比例,性价比不 ...
- Servlet生命周期+工作原理
Servlet生命周期+工作原理 1.Servlet的生命周期: Servlet加载,加载,服务,销毁. 2.典型函数解释: Init():这个函数是用来初始化Servlet对象的.在 ...
- maven 仓库搜索添加需要的jar包
可用仓库网址: http://search.maven.org/#browse http://mvnrepository.com/ http://repository.sonatype.org/ind ...
- 关于google电子地图跟卫星地图位置不重合
再做项目时,用到了google地图的显示位置,就是在网页上插入事物在地图上的位置,点击卫星地图跟电子地图时发现不是重合,网上GOOGLE了下,说是加密的问题给偏移了500米左右,用google测量工具 ...
- 字符设备驱动——memory编译问题及解决办法
1.fatal error:asm/system.h:No such file or directory #include <linux/version.h> #if LINUX_VERS ...
- 事件查看器常见ID代码解释
ID 类型 来 源 代 表 的 意 义 举 例 解 释 信息 Serial 在验证 \Device\Serial1 是否确实是串行口时,系统检测到先进先出方式(fifo).将使用该方式. 错误 W ...
- win8程序开机自启动管理
主要介绍利用系统自身的工具来管理开机自启动,而非第三方的工具,自己了解了,也写出来分享给大家@.·.@ 1.程序设置开机自启动 a. 打开计算机资源管理器-->进入"C:\Progra ...
- hihocoder-1389&&2016北京网赛07 Sewage Treatment(二分+网络流)
题目链接: Sewage Treatment 时间限制:2000ms 单点时限:2000ms 内存限制:256MB 描述 After years of suffering, people could ...
- codeforces 711B B. Chris and Magic Square(水题)
题目链接: B. Chris and Magic Square 题意: 问在那个空位子填哪个数可以使行列对角线的和相等,就先找一行或者一列算出那个数,再验证是否可行就好; AC代码: #include ...
- HDU 4865 Peter's Hobby --概率DP
题意:第i天的天气会一定概率地影响第i+1天的天气,也会一定概率地影响这一天的湿度.概率在表中给出.给出n天的湿度,推测概率最大的这n天的天气. 分析:这是引自机器学习中隐马尔科夫模型的入门模型,其实 ...