在opencv3.0中,提供了一个ml.cpp的文件,这里面全是机器学习的算法,共提供了这么几种:

1、正态贝叶斯:normal Bayessian classifier    我已在另外一篇博文中介绍过:在opencv3中实现机器学习之:利用正态贝叶斯分类

2、K最近邻:k nearest neighbors classifier

3、支持向量机:support vectors machine    请参考我的另外一篇博客:在opencv3中实现机器学习之:利用svm(支持向量机)分类

4、决策树: decision tree

5、ADA Boost:adaboost

6、梯度提升决策树:gradient boosted trees

7、随机森林:random forest

8、人工神经网络:artificial neural networks

9、EM算法:expectation-maximization

这些算法在任何一本机器学习书本上都可以介绍过,他们大致的分类过程都很相似,主要分为三个环节:

一、收集样本数据sampleData

二、训练分类器mode

三、对测试数据testData进行预测

不同的地方就是在opencv中的参数设定,假设训练数据为trainingDataMat,且已经标注好labelsMat。待测数据为testMat.

1、正态贝叶斯

 // 创建贝叶斯分类器
Ptr<NormalBayesClassifier> model=NormalBayesClassifier::create(); // 设置训练数据
Ptr<TrainData> tData =TrainData::create(trainingDataMat, ROW_SAMPLE, labelsMat); //训练分类器
model->train(tData);
//预测数据
float response = model->predict(testMat);

2、K最近邻

 Ptr<KNearest> knn = KNearest::create();  //创建knn分类器
knn->setDefaultK(K); //设定k值
knn->setIsClassifier(true);
// 设置训练数据
Ptr<TrainData> tData = TrainData::create(trainingDataMat, ROW_SAMPLE, labelsMat);
knn->train(tData);
float response = knn->predict(testMat);

3、支持向量机

Ptr<SVM> svm = SVM::create();    //创建一个分类器
svm->setType(SVM::C_SVC); //设置svm类型
svm->setKernel(SVM::POLY); //设置核函数;
svm->setDegree(0.5);
svm->setGamma();
svm->setCoef0();
svm->setNu(0.5);
svm->setP();
svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, , 0.01));
svm->setC(C);
Ptr<TrainData> tData = TrainData::create(trainingDataMat, ROW_SAMPLE, labelsMat);
svm->train(tData);
float response = svm->predict(testMat);

4、决策树: decision tree

Ptr<DTrees> dtree = DTrees::create();  //创建分类器
dtree->setMaxDepth(); //设置最大深度
dtree->setMinSampleCount();
dtree->setUseSurrogates(false);
dtree->setCVFolds(); //交叉验证
dtree->setUse1SERule(false);
dtree->setTruncatePrunedTree(false);
Ptr<TrainData> tData = TrainData::create(trainingDataMat, ROW_SAMPLE, labelsMat);
dtree->train(tData);
float response = dtree->predict(testMat);

5、ADA Boost:adaboost

 Ptr<Boost> boost = Boost::create();
boost->setBoostType(Boost::DISCRETE);
boost->setWeakCount();
boost->setWeightTrimRate(0.95);
boost->setMaxDepth();
boost->setUseSurrogates(false);
boost->setPriors(Mat());
Ptr<TrainData> tData = TrainData::create(trainingDataMat, ROW_SAMPLE, labelsMat);
boost->train(tData);
float response = boost->predict(testMat);

6、梯度提升决策树:gradient boosted trees

此算法在opencv3.0中被注释掉了,原因未知,因此此处提供一个老版本的算法。

GBTrees::Params params( GBTrees::DEVIANCE_LOSS, // loss_function_type
, // weak_count
0.1f, // shrinkage
1.0f, // subsample_portion
, // max_depth
false // use_surrogates )
);
Ptr<TrainData> tData = TrainData::create(trainingDataMat, ROW_SAMPLE, labelsMat);
Ptr<GBTrees> gbtrees = StatModel::train<GBTrees>(tData, params);
float response = gbtrees->predict(testMat);

7、随机森林:random forest

   Ptr<RTrees> rtrees = RTrees::create();
rtrees->setMaxDepth();
rtrees->setMinSampleCount();
rtrees->setRegressionAccuracy(.f);
rtrees->setUseSurrogates(false);
rtrees->setMaxCategories();
rtrees->setPriors(Mat());
rtrees->setCalculateVarImportance(false);
rtrees->setActiveVarCount();
rtrees->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, , ));
Ptr<TrainData> tData = TrainData::create(trainingDataMat, ROW_SAMPLE, labelsMat);
rtrees->train(tData);
float response = rtrees->predict(testMat);

8、人工神经网络:artificial neural networks

 Ptr<ANN_MLP> ann = ANN_MLP::create();
ann->setLayerSizes(layer_sizes);
ann->setActivationFunction(ANN_MLP::SIGMOID_SYM, , );
ann->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, , FLT_EPSILON));
ann->setTrainMethod(ANN_MLP::BACKPROP, 0.001);
Ptr<TrainData> tData = TrainData::create(trainingDataMat, ROW_SAMPLE, labelsMat);
ann->train(tData);
float response = ann->predict(testMat);

9、EM算法:expectation-maximization

EM算法与前面的稍微有点不同,它需要创建很多个model,将trainingDataMat分成很多个modelSamples,每个modelSamples训练出一个model

训练核心代码为:

 int nmodels = (int)labelsMat.size();
vector<Ptr<EM> > em_models(nmodels);
Mat modelSamples; for( i = ; i < nmodels; i++ )
{
const int componentCount = ; modelSamples.release();
for (j = ; j < labelsMat.rows; j++)
{
if (labelsMat.at<int>(j,)== i)
modelSamples.push_back(trainingDataMat.row(j));
} // learn models
if( !modelSamples.empty() )
{
Ptr<EM> em = EM::create();
em->setClustersNumber(componentCount);
em->setCovarianceMatrixType(EM::COV_MAT_DIAGONAL);
em->trainEM(modelSamples, noArray(), noArray(), noArray());
em_models[i] = em;
}
}

预测:

 Mat logLikelihoods(, nmodels, CV_64FC1, Scalar(-DBL_MAX));
for( i = ; i < nmodels; i++ )
{
if( !em_models[i].empty() )
logLikelihoods.at<double>(i) = em_models[i]->predict2(testMat, noArray())[];
}

这么多的机器学习算法,在实际用途中照我的理解其实只需要掌握svm算法就可以了。

ANN算法在opencv中也叫多层感知机,因此在训练的时候,需要分多层。

EM算法需要为每一类创建一个model。

其中一些算法的具体代码练习:在opencv3中的机器学习算法练习:对OCR进行分类

在opencv3中的机器学习算法的更多相关文章

  1. opencv3中的机器学习算法之:EM算法

    不同于其它的机器学习模型,EM算法是一种非监督的学习算法,它的输入数据事先不需要进行标注.相反,该算法从给定的样本集中,能计算出高斯混和参数的最大似然估计.也能得到每个样本对应的标注值,类似于kmea ...

  2. 在opencv3中实现机器学习算法之:利用最近邻算法(knn)实现手写数字分类

    手写数字digits分类,这可是深度学习算法的入门练习.而且还有专门的手写数字MINIST库.opencv提供了一张手写数字图片给我们,先来看看 这是一张密密麻麻的手写数字图:图片大小为1000*20 ...

  3. 在opencv3中的机器学习算法练习:对OCR进行分类

    OCR (Optical Character Recognition,光学字符识别),我们这个练习就是对OCR英文字母进行识别.得到一张OCR图片后,提取出字符相关的ROI图像,并且大小归一化,整个图 ...

  4. scikit-learn中的机器学习算法封装——kNN

    接前面 https://www.cnblogs.com/Liuyt-61/p/11738399.html 回过头来看这张图,什么是机器学习?就是将训练数据集喂给机器学习算法,在上面kNN算法中就是将特 ...

  5. 在opencv3中实现机器学习之:利用逻辑斯谛回归(logistic regression)分类

    logistic regression,注意这个单词logistic ,并不是逻辑(logic)的意思,音译过来应该是逻辑斯谛回归,或者直接叫logistic回归,并不是什么逻辑回归.大部分人都叫成逻 ...

  6. 在opencv3中实现机器学习之:利用svm(支持向量机)分类

    svm分类算法在opencv3中有了很大的变动,取消了CvSVMParams这个类,因此在参数设定上会有些改变. opencv中的svm分类代码,来源于libsvm. #include "s ...

  7. 在opencv3中实现机器学习之:利用正态贝叶斯分类

    opencv3.0版本中,实现正态贝叶斯分类器(Normal Bayes Classifier)分类实例 #include "stdafx.h" #include "op ...

  8. Python机器学习算法 — 朴素贝叶斯算法(Naive Bayes)

    朴素贝叶斯算法 -- 简介 朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法.最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Baye ...

  9. 简单易学的机器学习算法——基于密度的聚类算法DBSCAN

    一.基于密度的聚类算法的概述     最近在Science上的一篇基于密度的聚类算法<Clustering by fast search and find of density peaks> ...

随机推荐

  1. (传输层)UDP协议

    目录 数据单位特点具体实现要求UDP首部格式发送UDP请求的客户端图释 数据单位 UDP 传送的数据单位协议是 UDP 报文或用户数据报 特点 UDP 是无连接的,即发送数据之前不需要建立连接 UDP ...

  2. Java GC 面试问题

    转自:http://icyfenix.iteye.com/blog/715301 这个帖子的背景是今晚看到je上这张贴:http://www.iteye.com/topic/715256,心血来潮写下 ...

  3. Report List Controls

    Report风格的ListCtrl的扩展,原文链接地址:http://www.codeproject.com/Articles/5560/Another-Report-List-Control 1.列 ...

  4. 日志级别的选择:Debug、Info、Warn、Error还是Fatal

    原文地址:日志级别的选择:Debug.Info.Warn.Error还是Fatal 作者:shanshan2627 软件中总免不了要使用诸如 Log4net, Log4j, Tracer 等东东来写日 ...

  5. 图解SQL的inner join、left join、right join、full outer join、union、union all的区别

    转自:http://blog.csdn.net/jz20110918/article/details/41806611 假设我们有两张表.Table A 是左边的表.Table B 是右边的表.其各有 ...

  6. 关于google电子地图跟卫星地图位置不重合

    再做项目时,用到了google地图的显示位置,就是在网页上插入事物在地图上的位置,点击卫星地图跟电子地图时发现不是重合,网上GOOGLE了下,说是加密的问题给偏移了500米左右,用google测量工具 ...

  7. mysql、sql server、oracle数据库分页查询及分析(操作手册)

    1.mysql分页查询 方式1: select * from table order by id limit m, n; 该语句的意思为,查询m+n条记录,去掉前m条,返回后n条记录.无疑该查询能够实 ...

  8. input输入框focus获得焦点边缘发亮

    从某个插件上摘下来的代码 <html> <head> <title> New Document </title> <style> texta ...

  9. 记一次zookeeper集群搭建错误的排除

    zookeeper官网上的文档说得很清楚. http://zookeeper.apache.org/doc/r3.5.1-alpha/zookeeperAdmin.html#sc_designing ...

  10. Java dynamical proxy demo

    今天练习了一下动态代理的一个方面,假设使用它来完成自动设置默认不提交,启动事务,获取到异常则回滚,正常执行则提交. 如果不使用动态代理,则需要在每个方法本身里面设置Connection,写try,ca ...