Driver Amplifiers For Analog-To-Digital Converters

What amplifiers are used to drive analog-to-digital converters (ADCs)?

Possibilities include single-ended and differential inputs and outputs,

plus voltage feedback (VFB) or current feedback (CFB) in the control loop.

Specialized amplifiers may provide level shifting, interstage isolation, single-ended to differential conversion,

differential to single-ended conversion, plus attenuation or gain.

What are the considerations with VFB and CFB amplifiers?

With CFBs, closed-loop gain is largely independent of frequency.

Also, CFB amps provide faster slew rate and lower distortion and perform well at higher gains than VFB amps.

VFBs can offer lower noise and better dc performance than CFB amps.

Other tradeoffs lie in design constraints. With a VFB op amp, the circuit designer

has considerable freedom in choosing the value of the feedback resistor, although higher resistance values may limit stability.

CFB amplifier datasheets specify the feedback resistor values.

CFBs therefore lend themselves to applications that require higher gain levels.

What are the advantages of differential ADC drivers?

These drivers facilitate singleended-to-differential and differential-to-differential conversions,

common-mode level shifting, and amplification of differential signals.

They also exhibit lower distortion and faster settling time than singleended drivers.

How can a differential VFB ADC driver differ from a single-ended amplifier?

In addition to the usual inverting and non-inverting inputs, some differential VFB ADC drivers have another input,

VOCM, that shifts the commonmode voltage of the differential output (Fig. 1)

Like a VFB op amp, closed-loop gain is set by means of input and feedback resistances, but there must be separate,

matched resistors for the inverting and non-inverting inputs.

The internal common-mode feedback loop produces outputs that are highly balanced

over a wide frequency range without requiring tightly matched external components.

Thus, differential outputs are very close to the ideal of being identical in amplitude and are exactly 180° out of phase.

Also, if it is necessary, preserving the dc content of a signal can be accomplished via the VOCM function.

When would I need a single-ended, attenuating, level-translating ADC driver? How does it work?

Industrial applications often involve sensors driven by ±10-V signals.

That’s a problem with single-ended input ADCs fabricated to today’s smaller design rules because those ADCs are constrained to a smaller input signal swing.

A level-translating ADC driver takes a large signal, reduces the amplitude, and level-shifts the output commonmode voltage

so it is compatible with low-voltage, single-supply ADCs (Fig. 2).

For example, a 20-V p-p (±10-V) input signal riding on 0 V might be converted to a 4-V p-p signal riding on 2.5 V.

There are a number of other ways to perform level-translation.

It has been accomplished using multiple amplifiers, single differential drivers like those described above, or ADC drivers designed for level translation.

The approach using a single differential driver is simpler than the multi-amplifier approach, and the specialfunction level translation driver approach is simpler yet.

Such amps use internally lasertrimmed resistors, ensuring high gain accuracy, along with high common-mode rejection and low offset.

A final advantage is that, since the amp and ADC use the same supply voltage as the ADC, there is no need for multiple power supplies.

If a driver has a 1-GHz, –3-dB bandwidth, can I use it at that frequency to drive converter inputs?

If you’re driving a high-resolution ADC, look beyond the –3-dB spec and consider gain flatness and,

in particular, harmonic distortion as a function of frequency.

Recall that in a VFB amp, the –3-dB bandwidth figure simply reflects the half-power point after the amp’s open-loop gain starts its –6-dB/ octave roll-off.

That provides a rough figure for comparing amplifiers.

Your concern as a mixed-signal circuit designer must be to minimize the effect of amplifier distortion on the ADC’s effective number of bits (ENOB) performance.

ENOB is a function of signal-to-noise ratio (SNR) + distortion (SINAD) across the whole analog signal chain:

ENOB = (SINAD – 1.76)/6.02.

So, look to the data sheet graphs of harmonic distortion to make your decision.

Why would I want to use an active driver instead of a passive transformer?

The main reasons are to get better pass-band flatness and to isolate the signal from the noisy ADC input.

Transformers have a rather “lumpy” frequency response.

An amplifier should produce less variability, typically ±0.1 dB over the frequency range.

If the design calls for wideband gain, an amplifier provides a better match than a transformer to the ADC’s inputs.

Still looking at frequency response, some amplifiers provide dc coupling.

Transformers can’t deal with slowly varying signals.

Because transformers are passive devices and provide no interstage isolation,

noise generated on the secondary coil of the transformer from the ADC input will pass through it back to the original signal source.

In contrast, amplifiers buffer the signal source with a low output impedance,

providing 70 to 80 dB of interstage isolation from the ADC input back to the original signal source.

On the other hand, a consideration that favors transformers is that at higher frequencies,

they may maintain better SNR and spurious-free dynamic range (SFDR).

Nevertheless, within the first or second Nyquist zone, a transformer or an amplifier can be used.

AD8275 Driver Amplifiers For Analog-To-Digital Converters的更多相关文章

  1. Voltage Translation for Analog to Digital Interface ADC

    Voltage Translation for Analog to Digital Interface 孕龙逻辑分析仪 ZeroPlus Logic Analyzer How to modify an ...

  2. Fully Digital Implemented Delta-Sigma Analog to Digital Converter

    http://www.design-reuse.com/articles/14886/fully-digital-implemented-delta-sigma-analog-to-digital-c ...

  3. asm335x系列adc和触摸屏驱动(转)

    An analog-to-digital converter (abbreviated ADC) is a device that uses sampling to convert a continu ...

  4. Analog/digital converter (ADC)

    1.ADC1 and ADC2 are 10-bit successive approximation Anolog to Digital Converters. 所谓successive appro ...

  5. STM8S——Analog/digital converter (ADC)

    1.ADC1 and ADC2 are 10-bit successive approximation Anolog to Digital Converters. 所谓successive appro ...

  6. How to implement *All-Digital* analog-to-digital converters in FPGAs and ASICs

    When we engineers look at the complexity of system design these days, we are challenged with crammin ...

  7. PatentTips - Universal RAID Class Driver

    BACKGROUND OF THE INVENTION The present invention relates to the field of data storage devices. Comp ...

  8. how to generate an analog output from a in-built pwm of Atmega 32AVR microcontrloller?

    how to generate an analog output from a in-built pwm of Atmega 32AVR microcontrloller? you need a re ...

  9. How to modify analog output range of Arduino Due

    Voltage Translation for Analog to Digital Interface ADC How to modify analog output range of Arduino ...

随机推荐

  1. 浅析Linux下进程间通信:共享内存

    浅析Linux下进程间通信:共享内存 共享内存允许两个或多个进程共享一给定的存储区.因为数据不需要在客户进程和服务器进程之间复制,所以它是最快的一种IPC.使用共享内存要注意的是,多个进程之间对一给定 ...

  2. 在updatepanel使用colorbox无效

    今天在给一个使用colorbox的页面加了一个updatepanel后,colorbox无效了,原因是以前的页面初始化colorbox是用 $(document).ready(function(){ ...

  3. nginx日志中访问最多的100个ip及访问次数

    nginx日志中访问最多的100个ip及访问次数 awk '{print $1}' /opt/software/nginx/logs/access.log| sort | uniq -c | sort ...

  4. springMVC验证码程序

    原文地址:http://my.oschina.net/u/1757031/blog/488322 import java.awt.Color; import java.awt.Font; import ...

  5. 自己写ORM框架 DBUtils_DG Java(C#的写在链接里)

    ORM框架想必大家都比较熟知了,即对象关系映射(英语:Object Relation Mapping,简称ORM,或O/RM,或O/R mapping),是一种程序技术,用于实现面向对象编程语言里不同 ...

  6. oracle decode(nvl(estimate_qty,0),0,1,estimate_qty) 函數

    oracle   decode(nvl(estimate_qty,0),0,1,estimate_qty) 函數

  7. .Net中的Debug模式和Release模式

    1.Debug模式和Release模式 在vs中,运行程序有两种模式:Debug和Release 在bin目录下也会生成对应的文件夹,用于存放生成的dll等文件,这两种模式的区别如下: Debug:用 ...

  8. JBoss 系列四十八:JBoss 7/WildFly 使用TCP构建集群

    我知道JBoss 集群Default 的设定就是UDP(JGroups),但在实际环境中的网络环境时常不允许UDP,在这种情况下,我们就需要使用TCP. JBoss 7/WildFly 中负责集群的主 ...

  9. 分享一段视频关于SQL2014 Hekaton数据库的

    分享一段视频关于SQL2014 Hekaton数据库的 Microsoft SQL Server In-Memory OLTP Project "Hekaton": App Dev ...

  10. TypeScript开篇:尝点新鲜和甜头

    返回TS学习总目录 快速开始 我们通过创建一个简单的web应用来开始使用TypeScript.获得TS工具的方法主要有两种,一种是通过NPM(Node包管理器),另一种是通过VS2012安装TS的插件 ...