本文目的

 

最近使用spark处理较大的数据时,遇到了分区2G限制的问题(ken)。找到了解决方法,并且在网上收集了一些资料,记录在这里,作为备忘。

 

问题现象

 

遇到这个问题时,spark日志会报如下的日志,

片段1

15/04/16 14:13:03 WARN scheduler.TaskSetManager: Lost task 19.0 in stage 6.0 (TID 120, 10.215.149.47): java.lang.IllegalArgumentException: Size exceeds Integer.MAX_VALUE
at sun.nio.ch.FileChannelImpl.map(FileChannelImpl.java:828)
at org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:123)
at org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:132)
at org.apache.spark.storage.BlockManager.doGetLocal(BlockManager.scala:517)
at org.apache.spark.storage.BlockManager.getLocal(BlockManager.scala:432)
at org.apache.spark.storage.BlockManager.get(BlockManager.scala:618)
at org.apache.spark.CacheManager.putInBlockManager(CacheManager.scala:146)
at org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:70)

 

片段2

15/04/16 14:19:45 INFO scheduler.TaskSetManager: Starting task 20.2 in stage 6.0 (TID 146, 10.196.151.213, PROCESS_LOCAL, 1666 bytes)

15/04/16 14:19:45 INFO scheduler.TaskSetManager: Lost task 20.2 in stage 6.0 (TID 146) on executor 10.196.151.213: java.lang.IllegalArgumentException (Size exceeds Integer.MAX_VALUE) [duplicate 1]

15/04/16 14:19:45 INFO scheduler.TaskSetManager: Starting task 20.3 in stage 6.0 (TID 147, 10.196.151.213, PROCESS_LOCAL, 1666 bytes)

15/04/16 14:19:45 INFO scheduler.TaskSetManager: Lost task 20.3 in stage 6.0 (TID 147) on executor 10.196.151.213: java.lang.IllegalArgumentException (Size exceeds Integer.MAX_VALUE) [duplicate 2]

15/04/16 14:19:45 ERROR scheduler.TaskSetManager: Task 20 in stage 6.0 failed 4 times; aborting job

15/04/16 14:19:45 INFO cluster.YarnClusterScheduler: Cancelling stage 6

15/04/16 14:19:45 INFO cluster.YarnClusterScheduler: Stage 6 was cancelled

15/04/16 14:19:45 INFO scheduler.DAGScheduler: Job 6 failed: collectAsMap at DecisionTree.scala:653, took 239.760845 s

15/04/16 14:19:45 ERROR yarn.ApplicationMaster: User class threw exception: Job aborted due to stage failure: Task 20 in stage 6.0 failed 4 times, most recent failure: Lost task 20.3 in stage 6.0 (TID 147, 10.196.151.213): java.lang.IllegalArgumentException: Size exceeds Integer.MAX_VALUE

at sun.nio.ch.FileChannelImpl.map(FileChannelImpl.java:828)

 

注意红色高亮部分,异常就是某个partition的数据量超过了Integer.MAX_VALUE(2147483647 = 2GB)。

 

解决方法

 

手动设置RDD的分区数量。当前使用的Spark默认RDD分区是18个,后来手动设置为1000个,上面这个问题就迎刃而解了。可以在RDD加载后,使用RDD.repartition(numPart:Int)函数重新设置分区数量。

 

为什么2G限制

 

目前spark社区对这个限制有很多讨(tu)论(cao),spark官方团队已经注意到了这个问题,但是直到1.2版本,这个问题还是没有解决。因为牵涉到整个RDD的实现框架,所以改进成本相当大!

 

下面是一些相关的资料,有兴趣的读者可以进一步的阅读:

 

个人思(yu)考(jian)

 

这个限制有一定合理性。因为RDD中partition的操作是并发执行的,如果partition量过少,导致并发数过少,会限制计算效率。所以,基于这个限制,spark应用程序开发者会主动扩大partition数量,也就是加大并发量,最终提高计算性能。

 

以上只是一些个能思考,如果不正确,还请拍砖。

RDD分区2GB限制的更多相关文章

  1. 对RDD分区的理解

    举个例子: val logFile = "file:///home/soyo/桌面/6.txt" val conf = new SparkConf().setAppName(&qu ...

  2. 【原创】大数据基础之Spark(7)spark读取文件split过程(即RDD分区数量)

    spark 2.1.1 spark初始化rdd的时候,需要读取文件,通常是hdfs文件,在读文件的时候可以指定最小partition数量,这里只是建议的数量,实际可能比这个要大(比如文件特别多或者特别 ...

  3. [Spark RDD_add_2] Spark RDD 分区补充内容

    [Spark & Hadoop 的分区] Spark 的分区是切片的个数,每个 RDD 都有自己的分区数. Hadoop 的分区指的是 Reduce 的个数,是 Map 过程中对 Key 进行 ...

  4. spark 中如何查看单个RDD分区的内容(创建分区,查看分区数)

    spark 创建分区 val scores = Array(("Fred", 88), ("Fred", 95), ("Fred", 91) ...

  5. 在Spark集群中,集群的节点个数、RDD分区个数、​cpu内核个数三者与并行度的关系

    梳理一下Spark中关于并发度涉及的几个概念File,Block,Split,Task,Partition,RDD以及节点数.Executor数.core数目的关系. 输入可能以多个文件的形式存储在H ...

  6. Spark RDD 默认分区数量 - repartitions和coalesce异同

    RDD.getNumPartitions()方法可以获得一个RDD分区数量, 1.默认由文件读取的话,本地文件会进行shuffle,hdfs文件默认会按照dfs分片来设定. 2.计算生成后,默认会按照 ...

  7. RDD的分区相关

    分区是rdd的一个属性,每个分区是一个迭代器 分区器是决定数据数据如何分区 RDD划分成许多分区分布到集群的节点上,分区的多少涉及对这个RDD进行并行计算的粒度.用户可以获取分区数和设置分区数目,默认 ...

  8. RDD(六)——分区器

    RDD的分区器 Spark目前支持Hash分区和Range分区,用户也可以自定义分区,Hash分区为当前的默认分区,Spark中分区器直接决定了RDD中分区的个数.RDD中每条数据经过Shuffle过 ...

  9. 大数据学习day19-----spark02-------0 零碎知识点(分区,分区和分区器的区别) 1. RDD的使用(RDD的概念,特点,创建rdd的方式以及常见rdd的算子) 2.Spark中的一些重要概念

    0. 零碎概念 (1) 这个有点疑惑,有可能是错误的. (2) 此处就算地址写错了也不会报错,因为此操作只是读取数据的操作(元数据),表示从此地址读取数据但并没有进行读取数据的操作 (3)分区(有时间 ...

随机推荐

  1. Jade之Case

    Case jade中的case类似js中的switch语句. 当前一个when中无语句的时候,将一直往下直至遇到一个有语句的when才跳出. jade: - var friends = 10 case ...

  2. 第91讲:Akka第一个案例动手实战架构设计

    我们来看一下Akka的一个简单的wordcount的案例架构设计 从图中我们可以看出,不同的行我们是交给不同的actor进行入理的,每行首先进行map操作,识别出每个单词,然后交给reduce步骤的a ...

  3. QT 应用部署到Android的终端步骤

    参考网址: http://blog.csdn.net/syrchina/article/details/17335945

  4. javascript改变样式(cssFloat,styleFloat)

    昨天遇到一用js改变元素浮动的,当时直接写了 obj.style.float="left";结果没起作用:查了资料后才发现不能这样写,现在整理下几种样式写法 1,直接写css属性的 ...

  5. 拖动div简单事例代码

    事例文件下载 //拖动容器代码 var rDrag = { o: null, init: function (o) { o.onmousedown = this.start; }, start: fu ...

  6. sqlserver 链接 ODBC 访问 MySql

    环境:windows 2008 + sqlserver 2008 一 安装 mysql-connector-odbc-5.2.5-winx64.msi 必须安装5.2.5,安装mysql-connec ...

  7. 【仅支持移动设备】Swipe.JS轻量级移动幻灯效果

    在线演示 本地下载 请使用手机直接访问地址: 单独页面展示效果

  8. Django MVC simple

  9. atitit.hbnt orm db 新新增更新最佳实践o7

    atitit.hbnt orm db 新新增更新最佳实践o7 1. merge跟个save了. 1 2. POJO对象处于游离态.持久态.托管态.使用merge()的情况. 1 3. @Dynamic ...

  10. atitit. hb 原生sql跨数据库解决原理 获得hb 数据库类型运行期获得Dialect

    atitit. hb 原生sql跨数据库解决原理 获得hb 数据库类型运行期获得Dialect   #-----原理 Hibernate 运行期获得Dialect   2010-07-28 12:59 ...