欢迎转载,转载请注明出处,徽沪一郎。

Spark Streaming能够对流数据进行近乎实时的速度进行数据处理。采用了不同于一般的流式数据处理模型,该模型使得Spark Streaming有非常高的处理速度,与storm相比拥有更高的吞能力。

本篇简要分析Spark Streaming的处理模型,Spark Streaming系统的初始化过程,以及当接收到外部数据时后续的处理步骤。

系统概述

流数据的特点

与一般的文件(即内容已经固定)型数据源相比,所谓的流数据拥有如下的特点

  1. 数据一直处在变化中
  2. 数据无法回退
  3. 数据一直源源不断的涌进

DStream

如果要用一句话来概括Spark Streaming的处理思路的话,那就是"将连续的数据持久化,离散化,然后进行批量处理"。

让我们来仔细分析一下这么作的原因。

  • 数据持久化 将从网络上接收到的数据先暂时存储下来,为事件处理出错时的事件重演提供可能,
  • 离散化 数据源源不断的涌进,永远没有一个尽头,就像周星驰的喜剧中所说“崇拜之情如黄河之水绵绵不绝,一发而不可收拾”。既然不能穷尽,那么就将其按时间分片。比如采用一分钟为时间间隔,那么在连续的一分钟内收集到的数据集中存储在一起。
  • 批量处理 将持久化下来的数据分批进行处理,处理机制套用之前的RDD模式

DStream可以说是对RDD的又一层封装。如果打开DStream.scala和RDD.scala,可以发现几乎RDD上的所有operation在DStream中都有相应的定义。

作用于DStream上的operation分成两类

  1. Transformation
  2. Output 表示将输出结果,目前支持的有print, saveAsObjectFiles, saveAsTextFiles, saveAsHadoopFiles

DStreamGraph

有输入就要有输出,如果没有输出,则前面所做的所有动作全部没有意义,那么如何将这些输入和输出绑定起来呢?这个问题的解决就依赖于DStreamGraph,DStreamGraph记录输入的Stream和输出的Stream。

  private val inputStreams = new ArrayBuffer[InputDStream[_]]()
private val outputStreams = new ArrayBuffer[DStream[_]]() var rememberDuration: Duration = null
var checkpointInProgress = false

outputStreams中的元素是在有Output类型的Operation作用于DStream上时自动添加到DStreamGraph中的。

outputStream区别于inputStream一个重要的地方就是会重载generateJob.

初始化流程

StreamingContext

StreamingContext是Spark Streaming初始化的入口点,主要的功能是根据入参来生成JobScheduler

设定InputStream

如果流数据源来自于socket,则使用socketStream。如果数据源来自于不断变化着的文件,则可使用fileStream

提交运行

StreamingContext.start()

数据处理

以socketStream为例,数据来自于socket。

SocketInputDstream启动一个线程,该线程使用receive函数来接收数据

 def receive() {
var socket: Socket = null
try {
logInfo("Connecting to " + host + ":" + port)
socket = new Socket(host, port)
logInfo("Connected to " + host + ":" + port)
val iterator = bytesToObjects(socket.getInputStream())
while(!isStopped && iterator.hasNext) {
store(iterator.next)
}
logInfo("Stopped receiving")
restart("Retrying connecting to " + host + ":" + port)
} catch {
case e: java.net.ConnectException =>
restart("Error connecting to " + host + ":" + port, e)
case t: Throwable =>
restart("Error receiving data", t)
} finally { if (socket != null) {
socket.close()
logInfo("Closed socket to " + host + ":" + port)
}
}
}
}

接收到的数据会被先存储起来,存储最终会调用到BlockManager.scala中的函数,那么BlockManager是如何被传递到StreamingContext的呢?利用SparkEnv传入的,注意StreamingContext构造函数的入参。

处理定时器

数据的存储有是被socket触发的。那么已经存储的数据被真正的处理又是被什么触发的呢?

记得在初始化StreamingContext的时候,我们指定了一个时间参数,那么用这个参数会构造相应的重复定时器,一旦定时器超时,调用generateJobs函数。

private val timer = new RecurringTimer(clock, ssc.graph.batchDuration.milliseconds, longTime => eventActor ! GenerateJobs(new Time(longTime)), "JobGenerator")

事件处理函数

 /** Processes all events */
private def processEvent(event: JobGeneratorEvent) {
logDebug("Got event " + event)
event match {
case GenerateJobs(time) => generateJobs(time)
case ClearMetadata(time) => clearMetadata(time)
case DoCheckpoint(time) => doCheckpoint(time)
case ClearCheckpointData(time) => clearCheckpointData(time)
}
}

generteJobs

 private def generateJobs(time: Time) {
SparkEnv.set(ssc.env)
Try(graph.generateJobs(time)) match {
case Success(jobs) =>
val receivedBlockInfo = graph.getReceiverInputStreams.map { stream =>
val streamId = stream.id
val receivedBlockInfo = stream.getReceivedBlockInfo(time)
(streamId, receivedBlockInfo)
}.toMap
jobScheduler.submitJobSet(JobSet(time, jobs, receivedBlockInfo))
case Failure(e) =>
jobScheduler.reportError("Error generating jobs for time " + time, e)
}
eventActor ! DoCheckpoint(time)
}

generateJobs->generateJob一路下去会调用到Job.run,在job.run中调用sc.runJob,在具体调用路径就不一一列出。

 private class JobHandler(job: Job) extends Runnable {
def run() {
eventActor ! JobStarted(job)
job.run()
eventActor ! JobCompleted(job)
}
}

DStream.generateJob函数中定义了jobFunc,也就是在job.run()中使用到的jobFunc

  private[streaming] def generateJob(time: Time): Option[Job] = {
getOrCompute(time) match {
case Some(rdd) => {
val jobFunc = () => {
val emptyFunc = { (iterator: Iterator[T]) => {} }
context.sparkContext.runJob(rdd, emptyFunc)
}
Some(new Job(time, jobFunc))
}
case None => None
}
}

在这个流程中,DStreamGraph起到非常关键的作用,非常类似于TridentStorm中的graph.

在generateJob过程中,DStream会通过调用compute函数生成相应的RDD,SparkContext则是将基于RDD的抽象转换成为多个stage,而执行。

StreamingContext中一个重要的转换就是DStream到RDD的转换,而SparkContext中一个重要的转换是RDD到Stage及Task的转换。在这两个不同的抽象类中,要注意其中getOrCompute和compute函数的实现。

小结

本篇内容有点仓促,内容不够丰富翔实,争取回头有空的时候再好好丰富一下具体的调用路径。

对于容错处理机制,本文没有涉及,待研究明白之后另起一篇进行阐述。

Apache Spark源码走读之4 -- DStream实时流数据处理的更多相关文章

  1. Apache Spark源码走读之5 -- DStream处理的容错性分析

    欢迎转载,转载请注明出处,徽沪一郎,谢谢. 在流数据的处理过程中,为了保证处理结果的可信度(不能多算,也不能漏算),需要做到对所有的输入数据有且仅有一次处理.在Spark Streaming的处理机制 ...

  2. Apache Spark源码走读之7 -- Standalone部署方式分析

    欢迎转载,转载请注明出处,徽沪一郎. 楔子 在Spark源码走读系列之2中曾经提到Spark能以Standalone的方式来运行cluster,但没有对Application的提交与具体运行流程做详细 ...

  3. Apache Spark源码走读之16 -- spark repl实现详解

    欢迎转载,转载请注明出处,徽沪一郎. 概要 之所以对spark shell的内部实现产生兴趣全部缘于好奇代码的编译加载过程,scala是需要编译才能执行的语言,但提供的scala repl可以实现代码 ...

  4. Apache Spark源码走读之13 -- hiveql on spark实现详解

    欢迎转载,转载请注明出处,徽沪一郎 概要 在新近发布的spark 1.0中新加了sql的模块,更为引人注意的是对hive中的hiveql也提供了良好的支持,作为一个源码分析控,了解一下spark是如何 ...

  5. Apache Spark源码走读之23 -- Spark MLLib中拟牛顿法L-BFGS的源码实现

    欢迎转载,转载请注明出处,徽沪一郎. 概要 本文就拟牛顿法L-BFGS的由来做一个简要的回顾,然后就其在spark mllib中的实现进行源码走读. 拟牛顿法 数学原理 代码实现 L-BFGS算法中使 ...

  6. Apache Spark源码走读之18 -- 使用Intellij idea调试Spark源码

    欢迎转载,转载请注明出处,徽沪一郎. 概要 上篇博文讲述了如何通过修改源码来查看调用堆栈,尽管也很实用,但每修改一次都需要编译,花费的时间不少,效率不高,而且属于侵入性的修改,不优雅.本篇讲述如何使用 ...

  7. Apache Spark源码走读之6 -- 存储子系统分析

    欢迎转载,转载请注明出处,徽沪一郎. 楔子 Spark计算速度远胜于Hadoop的原因之一就在于中间结果是缓存在内存而不是直接写入到disk,本文尝试分析Spark中存储子系统的构成,并以数据写入和数 ...

  8. Apache Spark源码走读之17 -- 如何进行代码跟读

    欢迎转载,转载请注明出处,徽沪一郎 概要 今天不谈Spark中什么复杂的技术实现,只稍为聊聊如何进行代码跟读.众所周知,Spark使用scala进行开发,由于scala有众多的语法糖,很多时候代码跟着 ...

  9. Apache Spark源码走读之11 -- sql的解析与执行

    欢迎转载,转载请注明出处,徽沪一郎. 概要 在即将发布的spark 1.0中有一个新增的功能,即对sql的支持,也就是说可以用sql来对数据进行查询,这对于DBA来说无疑是一大福音,因为以前的知识继续 ...

随机推荐

  1. Repairing Company(poj 3216)

    题目大意: 有Q个地点,告诉你Q个地点之间的相互距离(从i地点赶到j地点需要的时间).有M项任务, 给你M项任务所在的地点block.开始时间start和任务完成需要时间time.一个工人只有在 他准 ...

  2. 6个朋友(codevs 2832)

    2832 6个朋友  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解       题目描述 Description 有这么一种说法:认识6个人,你就认识全世 ...

  3. ipconfig 无效

    刚刚配置了很多的环境变量后,在命令行下输入ipconfig后无效了 于是在环境变量PATH底下再次加入了;C:\WINDOWS\system32; 从新运行ipconfig,问题解决

  4. js “+” 连接字符串&数字相加 数字相加出现多位小数 函数调用单引号双引号嵌套和转义字符的使用

    一.机制 JavaScript中,加号不仅表示相加还表示字符串连接 当加号两边存在字符串时,加号代表连接,实际上是将两侧都转为了字符串,如 "1" + 1 = "11&q ...

  5. CSS选择器以及优先级与匹配原理

    最常用的五类CSS选择器 准确而简洁的运用CSS选择器会达到非常好的效果.我们不必通篇给每一个元素定义类(class)或ID,通过合适的组织,可以用最简单的方法实现同样的效果.在实际工作中,最常用的选 ...

  6. Android_adb shell am/pm使用

    转自:http://blog.sina.com.cn/s/blog_51335a0001017ux5.html   adb shell am instrument [options] <COMP ...

  7. Sublime Text : 创建工程

    Sublime Text 可以很方便地管理多个工程.使用Sublime Text的Projects,可以将不同根目录的文件组织起来成为一个工程,而不用将所有的文件都放到一个根目录下面. 1. 创建工程 ...

  8. Chromium Embedded Framework 中文文档(简介)

    转自:http://www.cnblogs.com/think/archive/2011/10/06/CEF-Introduce.html 简介 Chromium Embedded Framework ...

  9. 操作JNI函数以及复杂对象传递

    转自:http://blog.csdn.net/qinjuning/article/details/7607214 在掌握了JNI函数的使用和相关类型的映射后,以及知晓何利用javah工具生成对应的j ...

  10. Luci中cbi控件类型总结

    转自:http://blog.chinaunix.net/uid-28413840-id-4654479. 名称 描述 继承自 模板 NamedSection A fixed configuratio ...