Kullback–Leibler divergence KL散度

In probability theory and information theory, the Kullback–Leibler divergence[1][2][3] (also information divergence,information gain, relative entropy, or KLIC) is a non-symmetric measure of the difference between two probability distributions P and Q. KL measures the expected number of extra bits required to code samples from P when using a code based on Q, rather than using a code based on P. Typically P represents the "true" distribution of data, observations, or a precise calculated theoretical distribution. The measure Q typically represents a theory, model, description, or approximation of P.

Although it is often intuited as a distance metric, the KL divergence is not a true metric – for example, the KL from P to Q is not necessarily the same as the KL from Q to P.

KL divergence is a special case of a broader class of divergences called f-divergences. Originally introduced by Solomon Kullbackand Richard Leibler in 1951 as the directed divergence between two distributions, it is not the same as a divergence incalculus. However, the KL divergence can be derived from the Bregman divergence.

注意P通常指数据集,我们已有的数据集,Q表示理论结果,所以KL divergence 的物理含义就是当用Q来编码P中的采样时,比用P来编码P中的采用需要多用的位数!

KL散度,也有人称为KL距离,但是它并不是严格的距离概念,其不满足三角不等式

KL散度是不对称的,当然,如果希望把它变对称,

Ds(p1, p2) = [D(p1, p2) + D(p2, p1)] / 2

下面是KL散度的离散和连续定义!

注意的一点是p(x) 和q(x)分别是pq两个随机变量的PDF,D(P||Q)是一个数值,而不是一个函数,看下图!

注意:KL Area to be Integrated!

KL 散度一个很强大的性质:

The Kullback–Leibler divergence is always non-negative,

a result known as Gibbs' inequality, with DKL(P||Q) zero if and only if P = Q.

计算KL散度的时候,注意问题是在稀疏数据集上KL散度计算通常会出现分母为零的情况!

Matlab中的函数:KLDIV给出了两个分布的KL散度

Description

KLDIV Kullback-Leibler or Jensen-Shannon divergence between two distributions.

KLDIV(X,P1,P2) returns the Kullback-Leibler divergence between two distributions specified over the M variable values in vector X. P1 is a length-M vector of probabilities representing distribution 1, and P2 is a length-M vector of probabilities representing distribution 2. Thus, the probability of value X(i) is P1(i) for distribution 1 and P2(i) for distribution 2. The Kullback-Leibler divergence is given by:

KL(P1(x),P2(x)) = sum[P1(x).log(P1(x)/P2(x))]

If X contains duplicate values, there will be an warning message, and these values will be treated as distinct values. (I.e., the actual values do not enter into the computation, but the probabilities for the two duplicate values will be considered as probabilities corresponding to two unique values.) The elements of probability vectors P1 and P2 must each sum to 1 +/- .00001.

A "log of zero" warning will be thrown for zero-valued probabilities. Handle this however you wish. Adding 'eps' or some other small value to all probabilities seems reasonable. (Renormalize if necessary.)

KLDIV(X,P1,P2,'sym') returns a symmetric variant of the Kullback-Leibler divergence, given by [KL(P1,P2)+KL(P2,P1)]/2. See Johnson and Sinanovic (2001).

KLDIV(X,P1,P2,'js') returns the Jensen-Shannon divergence, given by [KL(P1,Q)+KL(P2,Q)]/2, where Q = (P1+P2)/2. See the Wikipedia article for "Kullback–Leibler divergence". This is equal to 1/2 the so-called "Jeffrey divergence." See Rubner et al. (2000).

EXAMPLE: Let the event set and probability sets be as follow: 
   X = [1 2 3 3 4]'; 
   P1 = ones(5,1)/5; 
   P2 = [0 0 .5 .2 .3]' + eps; 
Note that the event set here has duplicate values (two 3's). These will be treated as DISTINCT events by KLDIV. If you want these to be treated as the SAME event, you will need to collapse their probabilities together before running KLDIV. One way to do this is to use UNIQUE to find the set of unique events, and then iterate over that set, summing probabilities for each instance of each unique event. Here, we just leave the duplicate values to be treated independently (the default): 
   KL = kldiv(X,P1,P2); 
   KL = 
        19.4899

Note also that we avoided the log-of-zero warning by adding 'eps' to all probability values in P2. We didn't need to renormalize because we're still within the sum-to-one tolerance.

REFERENCES: 
1) Cover, T.M. and J.A. Thomas. "Elements of Information Theory," Wiley, 1991. 
2) Johnson, D.H. and S. Sinanovic. "Symmetrizing the Kullback-Leibler distance." IEEE Transactions on Information Theory (Submitted). 
3) Rubner, Y., Tomasi, C., and Guibas, L. J., 2000. "The Earth Mover's distance as a metric for image retrieval." International Journal of Computer Vision, 40(2): 99-121. 
4) <a href="http://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence"&gt;Kullback–Leiblerdivergence</a>. Wikipedia, The Free Encyclopedia.

paper 23 :Kullback–Leibler divergence KL散度(2)的更多相关文章

  1. KL散度(Kullback–Leibler divergence)

    KL散度是度量两个分布之间差异的函数.在各种变分方法中,都有它的身影. 转自:https://zhuanlan.zhihu.com/p/22464760 一维高斯分布的KL散度 多维高斯分布的KL散度 ...

  2. paper 22:kl-divergence(KL散度)实现代码

    这个函数很重要: function KL = kldiv(varValue,pVect1,pVect2,varargin) %KLDIV Kullback-Leibler or Jensen-Shan ...

  3. 【原】浅谈KL散度(相对熵)在用户画像中的应用

    最近做用户画像,用到了KL散度,发现效果还是不错的,现跟大家分享一下,为了文章的易读性,不具体讲公式的计算,主要讲应用,不过公式也不复杂,具体可以看链接. 首先先介绍一下KL散度是啥.KL散度全称Ku ...

  4. 浅谈KL散度

    一.第一种理解 相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information divergence) ...

  5. ELBO 与 KL散度

    浅谈KL散度 一.第一种理解 相对熵(relative entropy)又称为KL散度(Kullback–Leibler divergence,简称KLD),信息散度(information dive ...

  6. 交叉熵cross entropy和相对熵(kl散度)

    交叉熵可在神经网络(机器学习)中作为损失函数,p表示真实标记的分布,q则为训练后的模型的预测标记分布,交叉熵损失函数可以衡量真实分布p与当前训练得到的概率分布q有多么大的差异. 相对熵(relativ ...

  7. KL散度的理解(GAN网络的优化)

    原文地址Count Bayesie 这篇文章是博客Count Bayesie上的文章Kullback-Leibler Divergence Explained 的学习笔记,原文对 KL散度 的概念诠释 ...

  8. KL散度与JS散度

    1.KL散度 KL散度( Kullback–Leibler divergence)是描述两个概率分布P和Q差异的一种测度.对于两个概率分布P.Q,二者越相似,KL散度越小. KL散度的性质:P表示真实 ...

  9. KL散度非负性证明

    1 KL散度 KL散度(Kullback–Leibler divergence) 定义如下: $D_{K L}=\sum\limits_{i=1}^{n} P\left(x_{i}\right) \t ...

随机推荐

  1. Oracle一些基本操作

    查看表以及列: Select * From all_tables where owner = 'userName' ---注意,这里需要区分大小写! select * from user_tab_co ...

  2. python环境搭建

    Python下载 Python最新源码,二进制文档,新闻资讯等可以在Python的官网查看到: Python官网:http://www.python.org/ 你可以在一下链接中下载Python的文档 ...

  3. qt如何实现一个渐隐窗口呢(开启的时候他是从上往下渐渐显示)

    qt如何实现一个渐隐窗口呢?就是比如说开启的时候他是从上往下渐渐显示的,关闭的时候从下往上渐渐小时的http://stackoverflow.com/questions/19087822/how-to ...

  4. 兼容的获得event

    function getEvent(e) { var e=window.event || event; return e.srcElement || e.target; }

  5. ios证书

    内容提要: 安装app时提示 “无法下载应用,此时无法安装“XXX””.我遇到过多次是由于ios的app出现证书问题.本篇文章讲解用ios证书制作过程,以及每个步骤的解释. 正文: Xcode签名至少 ...

  6. urlencode和rawurlencode的区别

    摘自http://blog.csdn.net/doggie1024/article/details/5698615 urlencode:返回字符串,此字符串中除了 -_. 之外的所有非字母数字字符都将 ...

  7. 关于action script与js相互调用的Security Error问题

    大家都知道,as和js相互调用可以通过ExternalInterface.call和ExternalInterface.addCallback来进行. 比较好的做法是使用之前通过ExternalInt ...

  8. imx6 android5.1 打开 调试串口

    imx6的工板烧录android 5.1的镜像,uboot中能使用debug口,kernel,文件系统中不能使用debug口. 打开kenel和文件系统debug口方法,在uboot的bootargs ...

  9. java发展道路

    1.

  10. Vue.2.0.5-事件处理器

    监听事件 可以用 v-on 指令监听 DOM 事件来触发一些 JavaScript 代码. 示例: <div id="example-1"> <button v- ...