Spark源码系列(六)Shuffle的过程解析
Spark大会上,所有的演讲嘉宾都认为shuffle是最影响性能的地方,但是又无可奈何。之前去百度面试hadoop的时候,也被问到了这个问题,直接回答了不知道。
这篇文章主要是沿着下面几个问题来开展:
1、shuffle过程的划分?
2、shuffle的中间结果如何存储?
3、shuffle的数据如何拉取过来?
Shuffle过程的划分
Spark的操作模型是基于RDD的,当调用RDD的reduceByKey、groupByKey等类似的操作的时候,就需要有shuffle了。再拿出reduceByKey这个来讲。
def reduceByKey(func: (V, V) => V, numPartitions: Int): RDD[(K, V)] = { reduceByKey(new HashPartitioner(numPartitions), func) }
reduceByKey的时候,我们可以手动设定reduce的个数,如果不指定的话,就可能不受控制了。
def defaultPartitioner(rdd: RDD[_], others: RDD[_]*): Partitioner = { val bySize = (Seq(rdd) ++ others).sortBy(_.partitions.size).reverse for (r <- bySize if r.partitioner.isDefined) { return r.partitioner.get } if (rdd.context.conf.contains("spark.default.parallelism")) { new HashPartitioner(rdd.context.defaultParallelism) } else { new HashPartitioner(bySize.head.partitions.size) } }
如果不指定reduce个数的话,就按默认的走:
1、如果自定义了分区函数partitioner的话,就按你的分区函数来走。
2、如果没有定义,那么如果设置了spark.default.parallelism,就使用哈希的分区方式,reduce个数就是设置的这个值。
3、如果这个也没设置,那就按照输入数据的分片的数量来设定。如果是hadoop的输入数据的话,这个就多了。。。大家可要小心啊。
设定完之后,它会做三件事情,也就是之前讲的3次RDD转换。
//map端先按照key合并一次 val combined = self.mapPartitionsWithContext((context, iter) => { aggregator.combineValuesByKey(iter, context) }, preservesPartitioning = true) //reduce抓取数据 val partitioned = new ShuffledRDD[K, C, (K, C)](combined, partitioner).setSerializer(serializer) //合并数据,执行reduce计算 partitioned.mapPartitionsWithContext((context, iter) => { new InterruptibleIterator(context, aggregator.combineCombinersByKey(iter, context)) }, preservesPartitioning = true)
1、在第一个MapPartitionsRDD这里先做一次map端的聚合操作。
2、ShuffledRDD主要是做从这个抓取数据的工作。
3、第二个MapPartitionsRDD把抓取过来的数据再次进行聚合操作。
4、步骤1和步骤3都会涉及到spill的过程。
怎么做的聚合操作,回去看RDD那章。
Shuffle的中间结果如何存储
作业提交的时候,DAGScheduler会把Shuffle的过程切分成map和reduce两个Stage(之前一直被我叫做shuffle前和shuffle后),具体的切分的位置在上图的虚线处。
map端的任务会作为一个ShuffleMapTask提交,最后在TaskRunner里面调用了它的runTask方法。
override def runTask(context: TaskContext): MapStatus = { val numOutputSplits = dep.partitioner.numPartitions metrics = Some(context.taskMetrics) val blockManager = SparkEnv.get.blockManager val shuffleBlockManager = blockManager.shuffleBlockManager var shuffle: ShuffleWriterGroup = null var success = false try { // serializer为空的情况调用默认的JavaSerializer,也可以通过spark.serializer来设置成别的 val ser = Serializer.getSerializer(dep.serializer) // 实例化Writer,Writer的数量=numOutputSplits=前面我们说的那个reduce的数量 shuffle = shuffleBlockManager.forMapTask(dep.shuffleId, partitionId, numOutputSplits, ser) // 遍历rdd的元素,按照key计算出来它所在的bucketId,然后通过bucketId找到相应的Writer写入 for (elem <- rdd.iterator(split, context)) { val pair = elem.asInstanceOf[Product2[Any, Any]] val bucketId = dep.partitioner.getPartition(pair._1) shuffle.writers(bucketId).write(pair) } // 提交写入操作. 计算每个bucket block的大小 var totalBytes = 0L var totalTime = 0L val compressedSizes: Array[Byte] = shuffle.writers.map { writer: BlockObjectWriter => writer.commit() writer.close() val size = writer.fileSegment().length totalBytes += size totalTime += writer.timeWriting() MapOutputTracker.compressSize(size) } // 更新 shuffle 监控参数. val shuffleMetrics = new ShuffleWriteMetrics shuffleMetrics.shuffleBytesWritten = totalBytes shuffleMetrics.shuffleWriteTime = totalTime metrics.get.shuffleWriteMetrics = Some(shuffleMetrics) success = true new MapStatus(blockManager.blockManagerId, compressedSizes) } catch { case e: Exception => // 出错了,取消之前的操作,关闭writer if (shuffle != null && shuffle.writers != null) { for (writer <- shuffle.writers) { writer.revertPartialWrites() writer.close() } } throw e } finally { // 关闭writer if (shuffle != null && shuffle.writers != null) { try { shuffle.releaseWriters(success) } catch { case e: Exception => logError("Failed to release shuffle writers", e) } } // 执行注册的回调函数,一般是做清理工作 context.executeOnCompleteCallbacks() } }
遍历每一个记录,通过它的key来确定它的bucketId,再通过这个bucket的writer写入数据。
下面我们看看ShuffleBlockManager的forMapTask方法吧。
def forMapTask(shuffleId: Int, mapId: Int, numBuckets: Int, serializer: Serializer) = { new ShuffleWriterGroup { shuffleStates.putIfAbsent(shuffleId, new ShuffleState(numBuckets)) private val shuffleState = shuffleStates(shuffleId) private var fileGroup: ShuffleFileGroup = null val writers: Array[BlockObjectWriter] = if (consolidateShuffleFiles) { fileGroup = getUnusedFileGroup() Array.tabulate[BlockObjectWriter](numBuckets) { bucketId => val blockId = ShuffleBlockId(shuffleId, mapId, bucketId) // 从已有的文件组里选文件,一个bucket一个文件,即要发送到同一个reduce的数据写入到同一个文件 blockManager.getDiskWriter(blockId, fileGroup(bucketId), serializer, bufferSize) } } else { Array.tabulate[BlockObjectWriter](numBuckets) { bucketId => // 按照blockId来生成文件,文件数为map数*reduce数 val blockId = ShuffleBlockId(shuffleId, mapId, bucketId) val blockFile = blockManager.diskBlockManager.getFile(blockId) if (blockFile.exists) { if (blockFile.delete()) { logInfo(s"Removed existing shuffle file $blockFile") } else { logWarning(s"Failed to remove existing shuffle file $blockFile") } } blockManager.getDiskWriter(blockId, blockFile, serializer, bufferSize) } }
1、map的中间结果是写入到本地硬盘的,而不是内存。
2、默认是一个Executor的中间结果文件是M*R(M=map数量,R=reduce的数量),设置了spark.shuffle.consolidateFiles为true之后是R个文件,根据bucketId把要分到同一个reduce的结果写入到一个文件中。
3、consolidateFiles采用的是一个reduce一个文件,它还记录了每个map的写入起始位置,所以查找的时候先通过reduceId查找到哪个文件,再通过mapId查找索引当中的起始位置offset,长度length=(mapId + 1).offset -(mapId).offset,这样就可以确定一个FileSegment(file, offset, length)。
4、Finally,存储结束之后, 返回了一个new MapStatus(blockManager.blockManagerId, compressedSizes),把blockManagerId和block的大小都一起返回。
个人想法,shuffle这块和hadoop的机制差别不大,tez这样的引擎会赶上spark的速度呢?还是让我们拭目以待吧!
Shuffle的数据如何拉取过来
ShuffleMapTask结束之后,最后走到DAGScheduler的handleTaskCompletion方法当中(关于中间的过程,请看《图解作业生命周期》)。
case smt: ShuffleMapTask => val status = event.result.asInstanceOf[MapStatus] val execId = status.location.executorId if (failedEpoch.contains(execId) && smt.epoch <= failedEpoch(execId)) { logInfo("Ignoring possibly bogus ShuffleMapTask completion from " + execId) } else { stage.addOutputLoc(smt.partitionId, status) } if (runningStages.contains(stage) && pendingTasks(stage).isEmpty) { markStageAsFinished(stage) if (stage.shuffleDep.isDefined) { // 真的map过程才会有这个依赖,reduce过程None mapOutputTracker.registerMapOutputs( stage.shuffleDep.get.shuffleId, stage.outputLocs.map(list => if (list.isEmpty) null else list.head).toArray, changeEpoch = true) } clearCacheLocs() if (stage.outputLocs.exists(_ == Nil)) { // 一些任务失败了,需要重新提交stage submitStage(stage) } else { // 提交下一批任务 } }
1、把结果添加到Stage的outputLocs数组里,它是按照数据的分区Id来存储映射关系的partitionId->MapStaus。
2、stage结束之后,通过mapOutputTracker的registerMapOutputs方法,把此次shuffle的结果outputLocs记录到mapOutputTracker里面。
这个stage结束之后,就到ShuffleRDD运行了,我们看一下它的compute函数。
SparkEnv.get.shuffleFetcher.fetch[P](shuffledId, split.index, context, ser)
它是通过ShuffleFetch的fetch方法来抓取的,具体实现在BlockStoreShuffleFetcher里面。
override def fetch[T]( shuffleId: Int, reduceId: Int, context: TaskContext, serializer: Serializer) : Iterator[T] = { val blockManager = SparkEnv.get.blockManager val startTime = System.currentTimeMillis // mapOutputTracker也分Master和Worker,Worker向Master请求获取reduce相关的MapStatus,主要是(BlockManagerId和size) val statuses = SparkEnv.get.mapOutputTracker.getServerStatuses(shuffleId, reduceId) // 一个BlockManagerId对应多个文件的大小 val splitsByAddress = new HashMap[BlockManagerId, ArrayBuffer[(Int, Long)]] for (((address, size), index) <- statuses.zipWithIndex) { splitsByAddress.getOrElseUpdate(address, ArrayBuffer()) += ((index, size)) } // 构造BlockManagerId 和 BlockId的映射关系,想不到ShffleBlockId的mapId,居然是1,2,3,4的序列... val blocksByAddress: Seq[(BlockManagerId, Seq[(BlockId, Long)])] = splitsByAddress.toSeq.map { case (address, splits) => (address, splits.map(s => (ShuffleBlockId(shuffleId, s._1, reduceId), s._2))) } // 名为updateBlock,实际是检验函数,每个Block都对应着一个Iterator接口,如果该接口为空,则应该报错 def unpackBlock(blockPair: (BlockId, Option[Iterator[Any]])) : Iterator[T] = { val blockId = blockPair._1 val blockOption = blockPair._2 blockOption match { case Some(block) => { block.asInstanceOf[Iterator[T]] } case None => { blockId match { case ShuffleBlockId(shufId, mapId, _) => val address = statuses(mapId.toInt)._1 throw new FetchFailedException(address, shufId.toInt, mapId.toInt, reduceId, null) case _ => throw new SparkException("Failed to get block " + blockId + ", which is not a shuffle block") } } } } // 从blockManager获取reduce所需要的全部block,并添加校验函数 val blockFetcherItr = blockManager.getMultiple(blocksByAddress, serializer) val itr = blockFetcherItr.flatMap(unpackBlock) val completionIter = CompletionIterator[T, Iterator[T]](itr, { // CompelteIterator迭代结束之后,会执行以下这部分代码,提交它记录的各种参数 val shuffleMetrics = new ShuffleReadMetrics shuffleMetrics.shuffleFinishTime = System.currentTimeMillis shuffleMetrics.fetchWaitTime = blockFetcherItr.fetchWaitTime shuffleMetrics.remoteBytesRead = blockFetcherItr.remoteBytesRead shuffleMetrics.totalBlocksFetched = blockFetcherItr.totalBlocks shuffleMetrics.localBlocksFetched = blockFetcherItr.numLocalBlocks shuffleMetrics.remoteBlocksFetched = blockFetcherItr.numRemoteBlocks context.taskMetrics.shuffleReadMetrics = Some(shuffleMetrics) }) new InterruptibleIterator[T](context, completionIter) } }
1、MapOutputTrackerWorker向MapOutputTrackerMaster获取shuffle相关的map结果信息。
2、把map结果信息构造成BlockManagerId --> Array(BlockId, size)的映射关系。
3、通过BlockManager的getMultiple批量拉取block。
4、返回一个可遍历的Iterator接口,并更新相关的监控参数。
我们继续看getMultiple方法。
def getMultiple( blocksByAddress: Seq[(BlockManagerId, Seq[(BlockId, Long)])], serializer: Serializer): BlockFetcherIterator = { val iter = if (conf.getBoolean("spark.shuffle.use.netty", false)) { new BlockFetcherIterator.NettyBlockFetcherIterator(this, blocksByAddress, serializer) } else { new BlockFetcherIterator.BasicBlockFetcherIterator(this, blocksByAddress, serializer) } iter.initialize() iter }
分两种情况处理,分别是netty的和Basic的,Basic的就不讲了,就是通过ConnectionManager去指定的BlockManager那里获取数据,上一章刚好说了。
我们讲一下Netty的吧,这个是需要设置的才能启用的,不知道性能会不会好一些呢?
看NettyBlockFetcherIterator的initialize方法,再看BasicBlockFetcherIterator的initialize方法,发现Basic的不能同时抓取超过48Mb的数据。
override def initialize() { // 分开本地请求和远程请求,返回远程的FetchRequest val remoteRequests = splitLocalRemoteBlocks() // 抓取顺序随机 for (request <- Utils.randomize(remoteRequests)) { fetchRequestsSync.put(request) } // 默认是开6个线程去进行抓取 copiers = startCopiers(conf.getInt())// 读取本地的block getLocalBlocks() }
在NettyBlockFetcherIterator的sendRequest方法里面,发现它是通过ShuffleCopier来试下的。
val cpier = new ShuffleCopier(blockManager.conf) cpier.getBlocks(cmId, req.blocks, putResult)
这块接下来就是netty的客户端调用的方法了,我对这个不了解。在服务端的处理是在DiskBlockManager内部启动了一个ShuffleSender的服务,最终的业务处理逻辑是在FileServerHandler。
它是通过getBlockLocation返回一个FileSegment,下面这段代码是ShuffleBlockManager的getBlockLocation方法。
def getBlockLocation(id: ShuffleBlockId): FileSegment = { // Search all file groups associated with this shuffle. val shuffleState = shuffleStates(id.shuffleId) for (fileGroup <- shuffleState.allFileGroups) { val segment = fileGroup.getFileSegmentFor(id.mapId, id.reduceId) if (segment.isDefined) { return segment.get } } throw new IllegalStateException("Failed to find shuffle block: " + id) }
先通过shuffleId找到ShuffleState,再通过reduceId找到文件,最后通过mapId确定它的文件分片的位置。但是这里有个疑问了,如果启用了consolidateFiles,一个reduce的所需数据都在一个文件里,是不是就可以把整个文件一起返回呢,而不是通过N个map来多次读取?还是害怕一次发送一个大文件容易失败?这就不得而知了。
到这里整个过程就讲完了。可以看得出来Shuffle这块还是做了一些优化的,但是这些参数并没有启用,有需要的朋友可以自己启用一下试试效果。
岑玉海
转载请注明出处,谢谢!
Spark源码系列(六)Shuffle的过程解析的更多相关文章
- Spark源码系列:RDD repartition、coalesce 对比
在上一篇文章中 Spark源码系列:DataFrame repartition.coalesce 对比 对DataFrame的repartition.coalesce进行了对比,在这篇文章中,将会对R ...
- Spark 源码分析 -- task实际执行过程
Spark源码分析 – SparkContext 中的例子, 只分析到sc.runJob 那么最终是怎么执行的? 通过DAGScheduler切分成Stage, 封装成taskset, 提交给Task ...
- Spark 源码系列(六)Shuffle 的过程解析
Spark 大会上,所有的演讲嘉宾都认为 shuffle 是最影响性能的地方,但是又无可奈何.之前去百度面试 hadoop 的时候,也被问到了这个问题,直接回答了不知道. 这篇文章主要是沿着下面几个问 ...
- Spark源码系列(一)spark-submit提交作业过程
前言 折腾了很久,终于开始学习Spark的源码了,第一篇我打算讲一下Spark作业的提交过程. 这个是Spark的App运行图,它通过一个Driver来和集群通信,集群负责作业的分配.今天我要讲的是如 ...
- Spark源码系列(五)分布式缓存
这一章想讲一下Spark的缓存是如何实现的.这个persist方法是在RDD里面的,所以我们直接打开RDD这个类. def persist(newLevel: StorageLevel): this. ...
- Spark源码系列:DataFrame repartition、coalesce 对比
在Spark开发中,有时为了更好的效率,特别是涉及到关联操作的时候,对数据进行重新分区操作可以提高程序运行效率(很多时候效率的提升远远高于重新分区的消耗,所以进行重新分区还是很有价值的).在Spark ...
- 框架源码系列六:Spring源码学习之Spring IOC源码学习
Spring 源码学习过程: 一.搞明白IOC能做什么,是怎么做的 1. 搞明白IOC能做什么? IOC是用为用户创建.管理实例对象的.用户需要实例对象时只需要向IOC容器获取就行了,不用自己去创建 ...
- Spring源码系列——容器的启动过程(一)
一. 前言 Spring家族特别庞大,对于开发人员而言,要想全面征服Spring家族,得花费不少的力气.俗话说,打蛇打七寸,那么Spring家族的"七寸"是什么呢?我心目中的答案一 ...
- Apache Spark源码走读之11 -- sql的解析与执行
欢迎转载,转载请注明出处,徽沪一郎. 概要 在即将发布的spark 1.0中有一个新增的功能,即对sql的支持,也就是说可以用sql来对数据进行查询,这对于DBA来说无疑是一大福音,因为以前的知识继续 ...
随机推荐
- redis和ssdb读取性能对比
最近关注了一下ssdb,它的特点是基于文件存储系统所以它支撑量大的数据而不因为内存的限制受取约束.从官网的测试报告来看其性能也非常出色和redis相当,因此可以使用它来代替redis来进行k-v数据业 ...
- solr与.net系列课程(五)solrnet的使用
solr与.net系列课程(五)solrnet的使用 最近因项目比较忙,所以这篇文章出的比较晚,离上一篇文章已经有半个月的时间了,这节课我们来学下一下solr的.net客户端solrnet 出处 ...
- [MSSQL2008]Spatial Data in SQL Server 2008 - 根据经纬度计算两点间距离
DECLARE @BJ GEOGRAPHY DECLARE @XT GEOGRAPHY /* GET Latitude/Longitude FROM here:http://www.trave ...
- 微软BI 之SSIS 系列 - MVP 们也不解的 Scrip Task 脚本任务中的一个 Bug
开篇介绍 前些天自己在整理 SSIS 2012 资料的时候发现了一个功能设计上的疑似Bug,在 Script Task 中是可以给只读列表中的变量赋值.我记得以前在 2008 的版本中为了弄明白这个配 ...
- 曲演杂坛--为什么SELECT语句会被其他SELECT阻塞?
很多刚入门的DBA在捕获阻塞得时候,会问这么一个问题“为什么这个SELECT语句被那个SELECT语句阻塞了,难道不是共享锁么?” 让我们来做个小测试,首先准备一些测试数据: --========== ...
- 从源代码分析Android-Universal-Image-Loader的缓存处理机制
讲到缓存,平时流水线上的码农一定觉得这是一个高大上的东西.看过网上各种讲缓存原理的文章,总感觉那些文章讲的就是玩具,能用吗?这次我将带你一起看过UIL这个国内外大牛都追捧的图片缓存类库的缓存处理机制. ...
- AngularJS快速入门指南01:导言
AngularJS使用新的attributes扩展了HTML AngularJS对单页面应用的支持非常好(SPAs) AngularJS非常容易学习 现在就开始学习AngularJS吧! 关于本指南 ...
- 无线客户端框架设计(4):自定义生命周期的设计(iOS篇)
首先要确定一点,我们的App,要基于XIB文件进行编程,而不是在每个相应的ViewController里面去手动创建页面的每个控件.这样做的好处是,将页面布局与业务逻辑彻底隔离.于是我们可以把xib的 ...
- ubuntu下firefox无法看bilibili解决方案
突然发现,在ubuntu中使用firefox打开bilibili网站无法加载视频与弹幕,在网上搜到的可能的问题为:linux下的firefox使用的flash player是老版本,bilibili不 ...
- tomcat文件服务配置
<Host name="localhost" appBase="" unpackWARs="true" auto ...