http://www.lydsy.com/JudgeOnline/problem.php?id=1061 (题目链接)

题意

  给定n天,第i天需要ai个志愿者,有m类志愿者,每类志愿者工作时间为[l,r],花费为ci,求最小花费。

Solution

  我用的是线性规划单纯形法。

  首先要用线性规划的对偶性构造出标准形式的线性规划。对偶性是什么呢。 
  

  给定一个最大化目标的线性规划,我们应该描述如何形式化一个对偶线性规划,其中目标是最小化,而且最优值与初始线性规划的最优值相同。当表示对偶性规划时,我们称初始的线性规划为原始线性规划。 
  为了构造对偶问题,我们将最大化改为最小化,交换右边系数与目标系数,并且将小于等于改为大于等于。原始问题的m个越是,每一个在对偶问题中都有一个对应的变量yi,对偶问题的n个约束,每一个在原始问题中都有一个对应的变量xj。

——算法导论

  所以这道题就很好做了对吧,裸的单纯形法。

代码

// bzoj1061
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<vector>
#define eps 1e-7
#define inf 2147483640
#define LL long long
#define free(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout);
using namespace std;
inline LL getint() {
LL x=0,f=1;char ch=getchar();
while (ch>'9' || ch<'0') {if (ch=='-') f=-1;ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0';ch=getchar();}
return x*f;
} const int maxn=1010,maxm=10100;
int n,m;
double v,a[maxm][maxn],b[maxm],c[maxn]; void Pivot(int l,int e) {
b[l]/=a[l][e];
for (int i=1;i<=n;i++) if (i!=e) a[l][i]/=a[l][e];
//a[l][e]=1/a[l][e];
for (int i=1;i<=m;i++)
if (i!=l && fabs(a[i][e])>eps) {
b[i]-=a[i][e]*b[l];
for (int j=1;j<=n;j++) if (j!=e) a[i][j]-=a[i][e]*a[l][j];
a[i][e]=-a[i][e]*a[l][e];
}
v+=c[e]*b[l];
for (int i=1;i<=n;i++) if (i!=e) c[i]-=c[e]*a[l][i];
c[e]=-c[e]*a[l][e];
}
double Simplex() {
int l,e;
while (1) {
for (e=1;e<=n;e++) if (c[e]>eps) break;
if (e==n+1) return v;
double tmp=inf;
for (int i=1;i<=m;i++)
if (a[i][e]>eps && b[i]/a[i][e]<tmp) tmp=b[i]/a[i][e],l=i;
if (tmp==inf) return inf;
Pivot(l,e);
}
}
int main() {
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++) scanf("%lf",&c[i]);
for (int i=1,x,y,z;i<=m;i++) {
scanf("%d%d%d",&x,&y,&z);
for (int j=x;j<=y;j++) a[i][j]=1;
b[i]=z;
}
printf("%d",(int)(Simplex()+0.5));
return 0;
}

  

【bzoj1061】 Noi2008—志愿者招募的更多相关文章

  1. [BZOJ1061][Noi2008]志愿者招募

    [BZOJ1061][Noi2008]志愿者招募 试题描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿 ...

  2. 网络流解线性规划问题 BZOJ1061: [Noi2008]志愿者招募

    线性规划定义: 在给定有限的资源和竞争约束情况下,很多问题都可以表述为最大化或最小化某个目标.如果可以把目标指定为某些变量的线性函数,而且如果可以将资源约束指定为这些变量的等式或不等式,则得到了一个线 ...

  3. 【费用流】BZOJ1061: [Noi2008]志愿者招募(这题超好)

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 5291  Solved: 3173[Submit][Stat ...

  4. [BZOJ1061] [Noi2008] 志愿者招募 (费用流)

    Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能 ...

  5. BZOJ1061 [Noi2008]志愿者招募 【单纯形】

    题目链接 BZOJ1061 题解 今天终于用正宗的线性规划\(A\)了这道题 题目可以看做有\(N\)个限制和\(M\)个变量 变量\(x_i\)表示第\(i\)种志愿者的人数,对于第\(i\)种志愿 ...

  6. 【费用流】BZOJ1061[NOI2008]-志愿者招募

    [题目大意] 一个项目需要n天完成,其中第i天至少需要Ai个人.共有m类人可以招募,其中第i类可以从第Si天做到第Ti天,每人的招募费用为Ci元.求最小招募费用. [思路] byvoid神犇的建图详解 ...

  7. BZOJ1061: [Noi2008]志愿者招募(线性规划)

    Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 5725  Solved: 3437[Submit][Status][Discuss] Descript ...

  8. BZOJ1061 NOI2008 志愿者招募 线性规划、费用流

    传送门 一道思路很妙的线性规划网络流 设\(X_i\)表示第\(i\)天需要的人数,\(P_i\)表示第\(i\)种人雇佣的个数 那么我们可以列出一系列式子 比如说样例就可以列出三个式子: \(P_1 ...

  9. 线性规划费用流解法(Bzoj1061: [Noi2008]志愿者招募)

    题面 传送门 Sol 线性规划费用流解法用与求解未知数为非负数的问题 这道题可以列出一堆形如 \(x[i]+x[j]+x[k]+...>=a[p]\) 的不等式 我们强行给每个式子减去一个东西, ...

  10. [BZOJ1061][Noi2008]志愿者招募 线性规划+费用流

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1061 根据题意列方程,然后用网络流解线性规划. 题解直接贴ByVoid的吧,太神了:htt ...

随机推荐

  1. NGUI3.x Button事件

    代码调用事件 UI搭建 1.首先创建一个Button,和一个的GameObeject命名为GUIClikEvent 2.方法一:创建一个NGUIClickTest.cs,绑定在Button上 Clic ...

  2. java 12-5 StringBuffer的几个案例

    1. 把数组拼接成一个字符串 public class StringBufferTest2 { public static void main(String[] args) { //定义一个数组 in ...

  3. TIF、JPG图片手动添加地理坐标的方法(转载)

    题目:为TIF.JPG图片添加地理坐标/平面直角坐标. 图片来源:GOOGLE EARTH.(当然也可以是其他知道四角点坐标的图片) 截图工具:GEtscreen(此软件截图时可以自动生成图片四角点坐 ...

  4. Docker云Paas平台部署:Docker+Mesos+Marathon

    针对“互联网+”时代的业务增长.变化速度及大规模计算的需求,廉价的.高可扩展的分布式x86集群已成为标准解决方案,如Google已经在几千万台服务器上部署分布式系统.Docker及其相关技术的出现和发 ...

  5. mac 无法连接android手机进行调试 解决方案

    第一步: 查看usb设备信息 在 终端输入:system_profiler SPUSBDataType     可以查看连接的usb设备的信息 比如我的usb信息如下(部分内容): Android: ...

  6. jade 渲染js片段

    script. str = !{JSON.stringify(val)}; res.render('wxpay', {val:result});

  7. slatsatck file模块2种写法及系统初始化

    一 . lamp搭建   file2种写法 saltstack--一键yum lamp:---请注意重点: http://www.blogs8.cn/posts/WLjId80 知识点: 文件的2种写 ...

  8. 怎么样快速学习AngularJS?

    其实AngularJS的官方网站首页的几个例子已经很好的展示了AngularJS的一些特性,下面我就从几个例子一步一步的讲解AngularJS吸引人的东西并且实际项目中是怎么使用ng的. 首先还是从第 ...

  9. ios UILocalNotification的使用

    iOS下的Notification的使用 Notification是智能手机应用编程中非常常用的一种传递信息的机制,而且可以非常好的节省资源,不用消耗资源来不停地检查信息状态(Pooling),在iO ...

  10. 20145215《Java程序设计》第8周学习总结

    20145215<Java程序设计>第八周学习总结 教材学习内容总结 NIO与NIO2 认识NIO NIO使用频道(Channel)来衔接数据节点,在处理数据时,NIO可以设定缓冲区(Bu ...