本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。

本文作者:ljh2000 
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!

Description

Input

第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目。 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边。 图中可能有重边或自环。

Output

仅包含一个整数,表示最大的XOR和(十进制结果),注意输出后加换行回车。

Sample Input

5 7
1 2 2
1 3 2
2 4 1
2 5 1
4 5 3
5 3 4
4 3 2

Sample Output

6

HINT

正解:dfs+线性基

解题报告:

  继续刷线性基...

  这道题要求从1到n的最大xor和路径,存在重边,允许经过重复点、重复边。那么在图上作图尝试之后就会发现,路径一定是由许多的环和一条从1到n的路径组成。容易发现,来回走是没有任何意义的,因为来回走意味着抵消。考虑这道题求得是路径xor和最大,所以必然我们要想办法处理环的情况。我的做法是任意地先找出一条从1到n的路径,把这条路径上的xor和作为ans初值(先不管为什么可行),然后我们的任务就变成了求若干个环与这个ans初值所能组合成的xor最大值。显然,我们需要预处理出图上所有的环,并处理出所有环的环上xor值,这当然是dfs寻找,到n的路径的时候顺便求一下就可以了。

  当我们得到了若干个环的xor值之后,因为是要求xor最大值,我们就可以构出这所有xor值的线性基。构出之后,再用ans在线性基上取max就可以了。

  现在我们来讨论上述做法的可行性。

  第一种情况:我们对最终答案产生贡献的某个环离1到n的主路径很远,这样的话,因为至少可以保证1可以到达这个环,那么我们可以走到这个环之后绕环一周之后原路返回,这样从1走到环的路上这一段被重复经过所以无效,但是环上的xor值被我们得到了,所以我们并不关心这个环和主路径的关系,我们只关心环的权值。

  第二种情况:我们任意选取的到n的路径是否能保证最优性。假设存在一条更优的路径从1到n,那么这条路径与我们原来的路径构成了一个环,也就会被纳入线性基中,也会被计算贡献,假如这个环会被经过,那么最后的情况相当于是走了两遍原来选取的路径,抵消之后走了一次这个最优路径,所以我们无论选取的是哪条路径作为ans初值,都可以通过与更优情况构成环,然后得到一样的结果。这一证明可以拓展到路径上的任意点的路径选取。

  这样我们就可以完美解决了。我第一次WA了一发,因为我没有考虑到ans初值不为0,在线性基上取到xor的max的时候,不能单纯以ans这一位是否为0来决定是否异或上基的这一位,必须要看异或之后取一个max做一个判断才行。

 //It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
const int MAXN = ;
const int MAXM = ;
int n,m,ecnt;
int first[MAXN],next[MAXM],to[MAXM];
LL w[MAXM],dx[MAXN];
bool vis[MAXN];
int cnt;
LL circle[MAXM],ans;//经过每个环可获得的的权值
LL p[]; inline int getint(){int w=,q=;char c=getchar();while((c<''||c>'')&&c!='-')c=getchar();if(c=='-')q=,c=getchar();while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;}
inline LL getlong(){LL w=,q=;char c=getchar();while((c<'' || c>'')&&c!='-')c=getchar();if(c=='-') q=,c=getchar();while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;} inline void dfs(int x){
vis[x]=;
for(int i=first[x];i;i=next[i]) {
int v=to[i];
if(!vis[v]) dx[v]=dx[x]^w[i],dfs(v);
else circle[++cnt]=dx[v]^dx[x]^w[i];
}
} inline void work(){
n=getint(); m=getint(); int x,y; LL z;
for(int i=;i<=m;i++) {
x=getint(); y=getint(); z=getlong();
next[++ecnt]=first[x]; first[x]=ecnt; to[ecnt]=y; w[ecnt]=z;
next[++ecnt]=first[y]; first[y]=ecnt; to[ecnt]=x; w[ecnt]=z;
}
dfs();
ans=dx[n];//任取一条从1到n的路径,并得到其xor和
for(int i=;i<=cnt;i++)//构造线性基
for(int j=;j>=;j--) {
if(!(circle[i]>>j)) continue;
if(!p[j]) { p[j]=circle[i]; break; }
circle[i]^=p[j];
}
//for(int i=62;i>=0;i--) if(!(ans>>i)) ans^=p[i];
//ans有初值,不能直接根据这一位是否为0来判断是否更大,max更为稳妥
for(int i=;i>=;i--) if((ans^p[i])>ans) ans=ans^p[i];//从线性基中得到最大值
printf("%lld",ans);
} int main()
{
work();
return ;
}

BZOJ2115 [Wc2011] Xor的更多相关文章

  1. bzoj千题计划194:bzoj2115: [Wc2011] Xor

    http://www.lydsy.com/JudgeOnline/problem.php?id=2115 边和点可以重复经过,那最后的路径一定是从1到n的一条路径加上许多环 dfs出任意一条路径的异或 ...

  2. BZOJ2115 [Wc2011] Xor 【线性基】

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 3915  Solved: 1633 [Submit][Stat ...

  3. BZOJ2115:[WC2011] Xor(线性基)

    Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 ...

  4. 【题解】 bzoj2115: [Wc2011] Xor (线性基+dfs)

    bzoj2115,戳我戳我 Solution: 看得题解(逃,我太菜了,想不出这种做法 那么丢个链接 Attention: 板子别写错了 又写错了这次 \(long long\)是左移63位,多了会溢 ...

  5. BZOJ2115: [Wc2011] Xor(Dfs树,Xor线性无关组)

    Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 ...

  6. 【线性基】【贪心】【独立环】bzoj2115 [Wc2011] Xor

    网上到处都是题解,自己画个图也很好理解.虽然环的个数很多,但是都可以通过独立环之间异或出来,不用管. 独立环求法:生成树之后,每次向图里添加非树边(u,v),则这个独立环的异或和为sum[u]^sum ...

  7. bzoj2115 [Wc2011] Xor——高斯消元 & 异或线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2115 异或两次同一段路径的权值,就相当于没有走这段路径: 由此可以得到启发,对于不同的走法, ...

  8. 【BZOJ2115】[Wc2011] Xor 高斯消元求线性基+DFS

    [BZOJ2115][Wc2011] Xor Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ...

  9. 【bzoj2115】[Wc2011] Xor

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2512  Solved: 1049[Submit][Status ...

随机推荐

  1. SerializeField和Serializable

    Serialize功能 Unity3D 中提供了非常方便的功能可以帮助用户将 成员变量 在Inspector中显示,并且定义Serialize关系. 简单的说,在没有自定义Inspector的情况下所 ...

  2. css中position属性(absolute|relative|static|fixed)概述及应用

    position属性的相关定义: static:无特殊定位,对象遵循正常文档流; relative:对象遵循正常文档流; absolute:对象脱离正常文档流 fixed:对象脱离正常文档流 我们先来 ...

  3. 验证码生成的c语言库

    http://www.open-open.com/lib/view/open1324534929968.html

  4. Block 的基本用法

    iOS中Block的基础用法 转载自简书 本文简介 本章不会对Block做过多的实现研究.只是讲解基本的用法.纯粹基础知识.结合实际项目怎么去做举例.Block使用场景,可以在两个界面的传值,也可以对 ...

  5. emberjs创建类

    创建一个Person类Person = Ember.Object.extend({ say: function(thing) { alert(thing); } }); 创建一个Person对象也就是 ...

  6. ajax技术的应用?

    1,百度输入后的提示 2,新浪登录之后只刷新用户名

  7. 2666 Accept Ratio(打表AC)

    2666 Accept Ratio  时间限制: 1 s  空间限制: 32000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果     题目描述 Description 某陈痴迷 ...

  8. .NET 知识

    1.读懂IL代码就这么简单 IL是.NET框架中中间语言(Intermediate Language)的缩写.使用.NET框架提供的编译器可以直接将源程序编译为.exe或.dll文件,但此时编译出来的 ...

  9. 【MySQL】游标的具体使用详解

    测试表 level ; )); 再 insert 些数据 ;代码,初始化 drop procedure if exists useCursor // 建立 存储过程 create CREATE PRO ...

  10. [资料]Keychain 获取设备唯一

    BAIDU http://blog.csdn.net/wonengxing/article/details/42142595 http://www.cnblogs.com/max5945/archiv ...