【poj3177】 Redundant Paths
http://poj.org/problem?id=3177 (题目链接)
题意
给出一个n个节点m条边的无向图,求最少连几条边使图中没有桥。
Solution
我们可以发现,用最少的边使得图中没有桥,那么就是将图缩点得到树,求使每个叶子节点相连所需要的最少边数,即 (叶子节点个数+1)/2 。
Tarjan求出图中的桥,以及并查集记录下每个节点属于哪个双连通分量,只与一座桥相连的点即为叶子节点,统计答案即可。
听说会有重边,不过对我的程序好像并没有什么影响。
细节
这道题如果是求双联通分量然后缩点的话,还要考虑重边的影响,比如2 2 1 2 1 2这样的数据输出是1。所以我这里直接将桥抠出来并且用并查集维护双连通分量,这样通过桥来使缩点后树上节点度数增加,这样就能有效避免重边的问题。
代码
// poj3177
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<set>
#define MOD 1000000007
#define inf 2147483640
#define LL long long
#define free(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout);
using namespace std;
inline LL getint() {
LL x=0,f=1;char ch=getchar();
while (ch>'9' || ch<'0') {if (ch=='-') f=-1;ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0';ch=getchar();}
return x*f;
} const int maxn=10010;
struct edge {int to,next;}e[maxn<<2];
int f[maxn],dfn[maxn],vis[maxn],low[maxn],head[maxn],bridge[maxn][2],cnts[maxn];
int cnt,ind,s,n,m; void insert(int u,int v) {
e[++cnt].to=v;e[cnt].next=head[u];head[u]=cnt;
e[++cnt].to=u;e[cnt].next=head[v];head[v]=cnt;
}
int find(int x) {
return x==f[x] ? x : f[x]=find(f[x]);
}
void Tarjan(int u,int fa) {
dfn[u]=low[u]=++ind;
vis[u]=1;
for (int i=head[u];i;i=e[i].next) if (e[i].to!=fa) {
if (!vis[e[i].to]) {
Tarjan(e[i].to,u);
low[u]=min(low[u],low[e[i].to]);
if (dfn[u]<low[e[i].to]) {
bridge[++s][0]=u;
bridge[s][1]=e[i].to;
}
else {
int r1=find(u),r2=find(e[i].to);
f[r1]=r2;
}
}
else low[u]=min(low[u],dfn[e[i].to]);
}
}
int main() {
while (scanf("%d%d",&n,&m)!=EOF) {
cnt=ind=s=0;
for (int i=1;i<=n;i++) head[i]=dfn[i]=low[i]=vis[i]=cnts[i]=0;
for (int i=1;i<=m;i++) {
int x,y;
scanf("%d%d",&x,&y);
insert(x,y);
}
for (int i=1;i<=n;i++) f[i]=i;
Tarjan(1,-1);
for (int i=1;i<=s;i++) {
cnts[find(bridge[i][0])]++;
cnts[find(bridge[i][1])]++;
}
int ans=0;
for (int i=1;i<=n;i++) if (cnts[i]==1) ans++;
printf("%d\n",(ans+1)/2);
}
return 0;
}
【poj3177】 Redundant Paths的更多相关文章
- 【bzoj1718】Redundant Paths 分离的路径
1718: [Usaco2006 Jan] Redundant Paths 分离的路径 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 964 Solve ...
- 【POJ 3177】Redundant Paths(边双连通分量)
求出每个边双连通分量缩点后的度,度为1的点即叶子节点.原图加上(leaf+1)/2条边即可变成双连通图. #include <cstdio> #include <cstring> ...
- 【POJ 3177】Redundant Paths
http://poj.org/problem?id=3177 又写了一遍手动栈... 把边双都缩点,缩成一棵树,答案就是树中度数为1的点的个数除2上取整. 为什么呢?因为1个度数为1的点的树需要多连0 ...
- 【leetcode】Unique Paths
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
- 【leetcode】Unique Paths II
Unique Paths II Total Accepted: 22828 Total Submissions: 81414My Submissions Follow up for "Uni ...
- 【题解】【排列组合】【素数】【Leetcode】Unique Paths
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
- 【题解】【矩阵】【回溯】【Leetcode】Unique Paths II
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...
- 【数组】Unique Paths II
题目: Follow up for "Unique Paths": Now consider if some obstacles are added to the grids. H ...
- 【数组】Unique Paths
题目: A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). ...
随机推荐
- 在3D Max中查看模型引用的贴图
需求 假如在Max中有一个模型,想查看贴图 操作步骤 1.右上角点击 2.在弹出材质编辑器中 点击吸管 3.把吸管点击在角色模型上,然后点击M 4.点击查看图像 5.就能查看到模型使用的贴图
- 浏览器默认样式(User Agent Stylesheet)
原文:http://www.zjgsq.com/898.html 不同浏览器对于相同元素的默认样式并不一致,这也是为什么我们在CSS的最开始要写 * {padding:0;marging:0}: 不过 ...
- sql 索引 填充因子(转)
和索引重建最相关的是填充因子.当创建一个新索引,或重建一个存在的索引时,你可以指定一个填充因子,它是在索引创建时索引里的数据页被填充的数量.填充因子设置为100意味着每个索引页100%填满,50%意味 ...
- 用Swift GestureRecognizer 的几个注意点
最近做了一些关于 GestureRecognizer 的工作 ,随笔记录一些需要注意的点: 1. PanGestureRecognizer (1)在使用时 注意在哪个view添加了 手势识别 self ...
- SDRAM 学习(三)之command
command 模块总述 SDRAM 的 command 模块的内容包括如下: 1.对初始化请求.配置模式寄存器.读/写.刷新.预充电等命令的一个优先级的控制. 2.对命令执行时间进行控制,依据如图1 ...
- HDR 拍照模式的原理,实现及应用
转自:http://blog.csdn.net/fulinwsuafcie/article/details/9792189 HDR 拍照: (High Dynamic Range Ima ...
- C语言 详解多级指针与指针类型的关系
//V推论①:指针变量的步长只与‘指针变量的值’的类型有关(指针的值的类型 == 指针指向数据的类型) //指针类型跟指针的值有关,指针是占据4个字节大小的内存空间,但是指针的类型却是各不相同的 // ...
- 待整理-coredump
Linux下如何产生coredump(gdb调试用) 任务发生异常,需要记录遗言信息,利用gdb调试,因此需要记录coredump文件.设置查看:在root用户下执行sysctl -a | grep ...
- 基于IHttpAsyncHandler的TCP收发器
上一篇文章中,我们提到使用IHttpAsyncHandler来进行UDP的收发操作.由于UDP模型比较简单,所以运行没什么问题.这一篇我主要是使用IHttpAsyncHandler来进行TCP的收发操 ...
- SQL语句的添加、删除、修改多种方法
SQL语句的添加.删除.修改虽然有如下很多种方法,但在使用过程中还是不够用,不知是否有高手把更多灵活的使用方法贡献出来? 添加.删除.修改使用db.Execute(Sql)命令执行操作╔------- ...