转自:http://blog.csdn.net/xiao229404041/article/details/7031776

Linux设备驱动之semaphore机制
在Linux系统中,信号号是一种重要的加锁机制,特别在互斥型资源中,semaphore更能很好的工作。
1: semaphore结构体定义
在Linux2.6.35内核中,semaphore的实现机制与以前的版本一点不同,在其中去除了DECLARE_MUTEX_LOCKED这个初始化互斥宏定义,但是,又添加了一个特别重要的函数,down_killable,这个函数的添加,使此版本的semaphore机制比以往的更强。semaphore结构全定义如下所示。

C/C++ code
struct semaphore {
spinlock_t lock; /* 自旋锁结构体变量 */
unsigned int count; /* 用于计录资料数量 */
struct list_head wait_list; /* 内部链表结构体变量 */
};

从此结构体中可以看从,semaphore机制也就是自旋锁的包装,在后面的分析中,读者将会明白我为什么会这样说。
2: semaphore提供的操作函数
在semaphore机制中,系统给我们提供也几个函数用于操作,正因为内核给  
我们提供了这些函数接口,我们才能应用其来更好的完成我们对互斥型资料的加锁,使其能准确无误的在SMP或者多线程中应用。semaphore提供接口函数如下所示。
 DECLARE_MUTEX
 init_MUTEX
 init_MUTEX_LOCKED
 down
 down_interruptible
 down_killable
 down_trylock
 down_timeout
 up

3 DECLARE_MUTEX接口分析
DECLARE_MUTEX接口为一个宏定义,此定义调用另一个宏定义来完成对  
互斥型信号量进行初始化,其原型如下。

C/C++ code
#define DECLARE_MUTEX(name) \
struct semaphore name = __SEMAPHORE_INITIALIZER(name, 1)

此宏用于初始化一个名为name的信号量,并把其资料数初始化为1。其中name为信号的名字,name为符合系统的标号,且不需提前定义。比如我们想定义一个名为my_semaphore的互斥型信号量,并把它初始化为1,我们将应用这个接口来实现,实现代码如下。

C/C++ code
DECLARE_MUTEX(my_semaphore);

从DECLARE_MUTEX宏义看出,此宏是通过调用另一个宏来实现的,此宏定义实现如下。

C/C++ code
#define __SEMAPHORE_INITIALIZER(name, n) \
{ \
.lock = __SPIN_LOCK_UNLOCKED((name).lock), \
.count = n, \
.wait_list = LIST_HEAD_INIT((name).wait_list), \
}

4 init_MUTEX接口分析
init_MUTEX接口用于动态初始化一个信号量,此接口也是一个宏定义,通  
过调用sema_init函数来完成,此宏定义原型如下。

C/C++ code
#define init_MUTEX(sem) sema_init(sem, 1)

其中sem为struct semaphore结构体变量,所以,在应用此宏来初始化一个信号前,必须定义一个struct semaphore结构体变量。此宏初始化一个名为sem的信号量,并把其资料初始化为1。
在此宏中我们看到,宏定义是通过调用sema_init函数来完成初始化的,所可,可以这样说,真正初始化sem信号量的应该是sema_init函数。为了读者方便查看,所以在此把sema_init函数的实现过程列出,关于此函数请读者自行查看\include\linux\semaphore.h文件,这样读者对semaphore的理解更加深入。sema_init函数实现如下。

C/C++ code
static inline void sema_init(struct semaphore *sem, int val)
{
static struct lock_class_key __key;
*sem = (struct semaphore) __SEMAPHORE_INITIALIZER(*sem, val);
lockdep_init_map(&sem->lock.dep_map, "semaphore->lock", &__key, 0);
}

5 init_MUTEX_LOCKED接口分析
init_MUTEX_LOCKED接口的实现与init_MUTEX接口的实现过程是一样的,  
只是此接口把资源数初始化为0。所以在此不再进行分析,其实现如下。

C/C++ code
#define init_MUTEX_LOCKED(sem) sema_init(sem, 0)

6 __down_common函数分析
在进行分析互斥信号量相关操作之前,进行分析一个特别重要的函数,因为  
这个函数非常重要,semaphore的加锁操作都是基于这个函数实现的,所以,在分析它们之前进行分析这个函数,读者更加能看懂semaphore的实现过程。此函数的原型如下。

C/C++ code
static inline int __sched __down_common(struct semaphore *sem, long state,
long timeout)

在此函数中应用到的task_struct相关的知识,对于task_struct的知识在这个函数本人不进行分析,同时也不进行说明,因为task_struct机制是一个复杂的机制,不是三言两语就能分析的。在此函数中同样应用自旋锁的知识,关于自旋锁的知识本人将会在自旋锁机制相关的文章进行分析,在此文章中就不进行分析。本函数中一个重要的是超时调度,这一调度的实现如下。由于应用自旋锁加以保护,所以,超时调试过程有可中断,也不可中断,这就要看传入的state是允许中断还是不允许中断。超时调度实现过程如下。

C/C++ code
timeout = schedule_timeout(timeout);

7 down接口分析
down接口用于请求一个信号量。此函数的调用将会到致调用线程的睡眠,  
直到获取到信号。同时,该函数的调用不允许中断。
在此函数中首先进行信号量资源数的查看,如果信号量数据(count)不为0,则把其减1,并返回,调用成功;否则调用__down进行等待,调用者进行睡眠。实现过程如下。

C/C++ code
void down(struct semaphore *sem)
{
unsigned long flags;

spin_lock_irqsave(&sem->lock, flags);
if (likely(sem->count > 0))
sem->count--;
else
__down(sem);
spin_unlock_irqrestore(&sem->lock, flags);
}

在此函数中引起调用者进行睡眠的函数是__down函数,在等待中能不能中断同样是由于__down函数引起,所以,关键点在于__down函数,__down函数的实现如下。

C/C++ code
static noinline void __sched __down(struct semaphore *sem)
{
__down_common(sem,TASK_UNINTERRUPTIBLE,\
MAX_SCHEDULE_TIMEOUT);
}

在__down函数中,通过调用__down_common函数来进行相关的操作,在上面的分析中我提到,传给__down_common函数的state参数将决定调用者是否可以中断,所以,down接口在睡眠过程中不能中断就是因为传入的实参决定。所以,在编过程中,最好很用此接口,尽量应用down_interruptible、 down_killable接口替代。MAX_SCHEDULE_TIMEOUT为一个宏定义,实定义如下。

C/C++ code
#define MAX_SCHEDULE_TIMEOUT LONG_MAX

LONG_MAX同时也是一个宏定义,其定义如下。

C/C++ code
#define LONG_MAX ((long)(~0UL>>1))

所以,此接口不会因为超时而用,因为需要等待232-1个时钟滴答才能超时,这是一个很长的时间。所以,如果不使用up接口进行唤醒,整个进程将死掉。
9 down_interruptible接口分析
down_interruptible接口也是用于获取一个信号量,与down接口不同的是,  
此接口在等待过程中是可以被中断的,是正常返回还是被中断返回通过返回值进行判断,其它与down相同,所以,在此不再进行分析。
10 down_killable接口分析
down_killable与down_interruptible相同,只是传入的__down_common的实  
参不同,所以,在此不再进行分析。
11 down_trylock接口分析
down_trylock接口用于试着获取一个信号量,但是,此接口不会引起调用者  
的睡眠。不管有无可用信号量,都马上进行返回,如果返回0,则获取信号量成功,如果返回1,则获取失败。所以,在调用此接口时,必须进行返回的值的查看,看是否获取成功。其实现过程如下。

C/C++ code
int down_trylock(struct semaphore *sem)
{
unsigned long flags;
int count;

spin_lock_irqsave(&sem->lock, flags);
count = sem->count - 1;
if (likely(count >= 0))
sem->count = count;
spin_unlock_irqrestore(&sem->lock, flags);

return (count < 0);
}

12 down_timeout接口分析
down_timeout接口的实现过程与down接口的实现过程差不多,只是此接口  
可以自定义超时时间,也就是如果在超时间内不能得到信号量,调用者会因为超时而自行唤醒。其实现过程如下,请注意超时参数的传入。

C/C++ code
int down_timeout(struct semaphore *sem, long jiffies)
{
unsigned long flags;
int result = 0;

spin_lock_irqsave(&sem->lock, flags);
if (likely(sem->count > 0))
sem->count--;
else
result = __down_timeout(sem, jiffies);
spin_unlock_irqrestore(&sem->lock, flags);

return result;
}

13 up接口分析
up接口用于唤醒处于等待的线程,对于某些不能获取信号量的线程,如果不  
强制唤醒,那么也许会造此线程的死掉,所以,才有up接口。此接口的实现比较简单,所以不进行详细的分析,其实现如下。

C/C++ code
static noinline void __sched __up(struct semaphore *sem)
{
struct semaphore_waiter *waiter = list_first_entry(&sem->wait_list,
struct semaphore_waiter, list);
list_del(&waiter->list);
waiter->up = 1;
wake_up_process(waiter->task);
}

14 关于其它说明
从开始学习嵌入式Linux到现在也有差不多4个月的时间了,从一味的看书
到走进Linux内核,这是本人的一个重大的进步,很多时候知其然而不知其所以然,写不出好的程序,所以,深入Linux是每个学习嵌入式Linux驱动开发学习者的必经之路,同时也是一个生的事。
Linux内核的不断发展,每一个版本之间都或多或少的有改变,如果不进行入其内核进行分析,那么这样就等于把自己限定于某一内核版本内,对自己的技术的提高、发展有很大的影响。同时,在工作中,不是你知道什么,会什么就做什么,而是需要做什么,不管你会与会都必须得做,所以,能不能深入Linux内核在一点上把不同能力的人给区分了。
在能不能看懂Linux内核的问题上,起决定作用的是个人的C语言能力,这也是C语言好坏的体现,如果C语言不好,那么就不能可看懂Linux内核,那么也就决定了个人的发展。所以说在嵌入式C语言是决定个人发展的重大条件,同时也是个人能力的体现。

Linux设备驱动之semaphore机制【转】的更多相关文章

  1. linux设备驱动编写_tasklet机制

    在编写设备驱动时, tasklet 机制是一种比较常见的机制,通常用于减少中断处理的时间,将本应该是在中断服务程序中完成的任务转化成软中断完成. 为了最大程度的避免中断处理时间过长而导致中断丢失,有时 ...

  2. linux设备驱动编写_tasklet机制(转)

    在编写设备驱动时, tasklet 机制是一种比较常见的机制,通常用于减少中断处理的时间,将本应该是在中断服务程序中完成的任务转化成软中断完成. 为了最大程度的避免中断处理时间过长而导致中断丢失,有时 ...

  3. Linux 设备驱动之 UIO 机制

    一个设备驱动的主要任务有两个: 1. 存取设备的内存 2. 处理设备产生的中断 对于第一个任务.UIO 核心实现了mmap()能够处理物理内存(physical memory),逻辑内存(logica ...

  4. Linux 设备驱动之 UIO 机制(基本概念)

    一个设备驱动的主要任务有两个: 1. 存取设备的内存 2. 处理设备产生的中断 对于第一个任务.UIO 核心实现了mmap()能够处理物理内存(physical memory),逻辑内存(logica ...

  5. 【Linux高级驱动】linux设备驱动模型之平台设备驱动机制

    [1:引言: linux字符设备驱动的基本编程流程] 1.实现模块加载函数  a.申请主设备号    register_chrdev(major,name,file_operations);  b.创 ...

  6. linux设备驱动归纳总结(五):4.写个简单的LED驱动【转】

    本文转载自:http://blog.chinaunix.net/uid-25014876-id-84693.html linux设备驱动归纳总结(五):4.写个简单的LED驱动 xxxxxxxxxxx ...

  7. linux设备驱动归纳总结(四):5.多处理器下的竞态和并发【转】

    本文转载自:http://blog.chinaunix.net/uid-25014876-id-67673.html linux设备驱动归纳总结(四):5.多处理器下的竞态和并发 xxxxxxxxxx ...

  8. linux设备驱动第五篇:驱动中的并发与竟态

    综述 在上一篇介绍了linux驱动的调试方法,这一篇介绍一下在驱动编程中会遇到的并发和竟态以及如何处理并发和竞争. 首先什么是并发与竟态呢?并发(concurrency)指的是多个执行单元同时.并行被 ...

  9. Linux设备驱动开发详解-Note(11)--- Linux 文件系统与设备文件系统(3)

    Linux 文件系统与设备文件系统(3) 成于坚持,败于止步 sysfs 文件系统与 Linux 设备模型 1.sysfs 文件系统 Linux 2.6 内核引入了 sysfs 文件系统,sysfs ...

随机推荐

  1. kill 命令详解 系统信号

    kill  命令详解  系统信号 参考: 了解Linux的进程与线程 http://www.cnblogs.com/MYSQLZOUQI/p/4234005.html Linux就这个范儿 P532 ...

  2. 在美国看中国HTML5市场的发展

    近日,APICloud 创始人兼CEO刘鑫在美国旧金山和美国的HTML5开发者进行了一次近距离的接触,感受中美HTML5开发者的热度差别和不同市场阶段的中美表现巨大差异. 中国和美国的HTML5市场差 ...

  3. android mContainer.setPersistentDrawingCache (int drawingCacheToKeep)

    mContainer.setPersistentDrawingCache(ViewGroup.PERSISTENT_ANIMATION_CACHE); persistentDrawingCache设置 ...

  4. glusterFS安装维护文档

    .规划: .依赖包 yum install libibverbs librdmacm xfsprogs nfs-utils rpcbind libaio liblvm2app lvm2-devel l ...

  5. SweetAlert2 使用教程

    SweetAlert2是一款功能强大的纯Js模态消息对话框插件.SweetAlert2用于替代浏览器默认的弹出对话框,它提供各种参数和方法,支持嵌入图片,背景,HTML标签等,并提供5种内置的情景类, ...

  6. 使用NBU进行oracle异机恢复

    windows平台的异机恢复,目录不同 1.异机环境准备安装oracle介质安装nbu客户端在异机主机的host文件中添加nbu server主机和原主机信息 2.恢复spfile文件 C:\> ...

  7. 布置theano(Windows10,无cuda)

    软件包准备 1.Anaconda 下载地址,包含python.numpy.scipy.nose.pip等包,嗯,很爽. 2.tdm64-gcc 下载地址,windows下的gcc.g++编译器,用来t ...

  8. Siverlight去掉ToolTip的白色边框

    control作为tooltip后,外框背景是白色的,并且有边框.  我们可以定义 一个样式去掉. <Style x:Key="ToolTipTransparentStyle" ...

  9. C++Primer 第十一章

    //1.关键容器支持高效的关键字查找和访问. map 关联数组:保存关键字-值对.通过关键字来查找值. set 关键字即值,即只保存关键字的容器. multimap 关键字可重复出现的map mult ...

  10. int 与 Integer--话说数组转集合

    话说是自从JDK5后,而这就可以自动进行类型转换了. 当然,区别还是有的,就是对象和“非对象”什么的.可是,今天进行一个测试,出了一个小问题,现将代码贴下: 代码0:先来一个正常点的,用String进 ...