状态压缩DP--Mondriaan's Dream
题目网址:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=110044#problem/A
Description
Expert as he was in this material, he saw at a glance that he'll need a computer to calculate the number of ways to fill the large rectangle whose dimensions were integer values, as well. Help him, so that his dream won't turn into a nightmare!
Input
Output
Sample Input
1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0
Sample Output
1
0
1
2
3
5
144
51205 题意:给了一个n*m的大矩形,用1*2的小矩形去拼这样的一个矩形,求有多少种不同的拼法,如果不能拼出这样的矩形,输出0; 思路:用二进制表示每一行的状态,每个小格中放了矩形,用1表示,没放用0表示。从第一行开始,用从0到2^m-1的二进制表示第一行的所有状态,然后初始化这所有的状态对应的dp[0][i]值,若合法赋值为1·,否则赋值为0.然后从1行开始循环判断第i行的0到2^m-1所有的状态,分别每个j状态依次对应i-1行的每个是否合法,然后若合法,dp[i][j]++。最后输出dp[n-1][2^m-1]值即为结果。
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
using namespace std;
const int MAXN=;
const int MAX=(<<)+; long long dp[MAXN][MAX];///dp[i][j]表示在第i行j状态(2进制转化为10进制)方法数(其中i-1及以上行数排列完毕)
int n,m; bool firstrow(int t)///统计能否在第一行放置t状态
{
for(int i=; i<m; )
{
if (t & (<<i))///若为1,则是横放
{
if (i==m-) return false;
if (t& (<<(i+))) i+=;///横放需要连续两个格子
else return false;
}
else i++;
}
return true;
} bool judge(int tt,int t)
{
for(int i=; i<m; )
{
if (t & (<<i))///c行的i列为1
{
if (tt & (<<i))///c-1行的i列为1,说明c行为横放
{
///横放是否合法
if ((i==m-) || !(t&(<<(i+))) || !(tt&(<<(i+))) ) return false;
else i+=;
}
else i++;///c-1行i列为0,c行i列为1,竖放
}
else
{
if (tt&(<<i)) i++;///c行i列为0,那么c-1行i列必须为1
else return false;
}
}
return true;
} void DP()
{
if (n<m)
{
///使n更大,状态数量变少
swap(n,m);
}
int max=(<<m)-;///最多的状态数max+1;
memset(dp,,sizeof(dp));
for(int i=; i<=max; i++)///第一行所有状态数
if (firstrow(i)) dp[][i]=;///第一行i状态合法置1 for(int c=; c<=n; c++)///从第二行开始dp
for(int i=; i<=max; i++)///第c行所有状态
for(int ii=; ii<=max; ii++)///第c-1行状态,因为第c行i状态是受c-1行影响的
if(judge(ii,i)) dp[c][i]+=dp[c-][ii];///如果c-1行状态与第c行状态合法,更新c行i状态方法数
printf("%lld\n",dp[n][max]);///n行max状态(均为1)方法数
} int main()
{
while(~scanf("%d%d",&n,&m) && (n || m))
{
if (n& && m&)
{
cout<<<<endl;///如果n,m同为奇数,不可能填充完全
continue;
}
DP();
}
return ;
}
状态压缩DP--Mondriaan's Dream的更多相关文章
- 状态压缩DP(大佬写的很好,转来看)
奉上大佬博客 https://blog.csdn.net/accry/article/details/6607703 动态规划本来就很抽象,状态的设定和状态的转移都不好把握,而状态压缩的动态规划解决的 ...
- hoj2662 状态压缩dp
Pieces Assignment My Tags (Edit) Source : zhouguyue Time limit : 1 sec Memory limit : 64 M S ...
- POJ 3254 Corn Fields(状态压缩DP)
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4739 Accepted: 2506 Descr ...
- [知识点]状态压缩DP
// 此博文为迁移而来,写于2015年7月15日,不代表本人现在的观点与看法.原始地址:http://blog.sina.com.cn/s/blog_6022c4720102w6jf.html 1.前 ...
- HDU-4529 郑厂长系列故事——N骑士问题 状态压缩DP
题意:给定一个合法的八皇后棋盘,现在给定1-10个骑士,问这些骑士不能够相互攻击的拜访方式有多少种. 分析:一开始想着搜索写,发现该题和八皇后不同,八皇后每一行只能够摆放一个棋子,因此搜索收敛的很快, ...
- DP大作战—状态压缩dp
题目描述 阿姆斯特朗回旋加速式阿姆斯特朗炮是一种非常厉害的武器,这种武器可以毁灭自身同行同列两个单位范围内的所有其他单位(其实就是十字型),听起来比红警里面的法国巨炮可是厉害多了.现在,零崎要在地图上 ...
- 状态压缩dp问题
问题:Ignatius has just come back school from the 30th ACM/ICPC. Now he has a lot of homework to do. Ev ...
- BZOJ-1226 学校食堂Dining 状态压缩DP
1226: [SDOI2009]学校食堂Dining Time Limit: 10 Sec Memory Limit: 259 MB Submit: 588 Solved: 360 [Submit][ ...
- Marriage Ceremonies(状态压缩dp)
Marriage Ceremonies Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu ...
- HDU 1074 (状态压缩DP)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1074 题目大意:有N个作业(N<=15),每个作业需耗时,有一个截止期限.超期多少天就要扣多少 ...
随机推荐
- Hadoop-Drill深度剖析
1.概述 在<Hadoop - 实时查询Drill>一文当中,笔者给大家介绍如何去处理实时查询这样的业务场景,也是简略的提了一下如何去实时查询HDFS,然起相关细节并未说明.今天给大家细说 ...
- [AX]AX2012 Number sequence framework :(三)再谈Number sequence
AX2012的number sequence framework中引入了两个Scope和segment两个概念,它们的具体作用从下面序列的例子说起. 法国/中国的法律要求财务凭证的Journal nu ...
- 【转】你真的了解word-wrap和word-break的区别吗?
原文在这里: http://www.cnblogs.com/2050/archive/2012/08/10/2632256.html
- sublime3+wamp配置php,(无需配环境变量)
思来想去,最后还是决定给自己的手游加简单后端验证.好久没搞php了,最近搜了搜资料,发现现在php比几年前方便简单的多,有wampserver和sublime用.想想当年我还用记事本+phnow呢. ...
- Sharepoint 2013列表视图和字段权限扩展插件(免费下载)!
记得2014年春节期间,有博客园的网友通过QQ向我咨询Sharepoint 2013列表视图和字段权限扩展,因为之前他看到我博客介绍Sharepoint 2010列表视图和字段的权限控制扩展使用,问有 ...
- 阿里云ubuntu环境笔记
安装jdk8 1.下载JDK 从官网下载jdk8 jdk-8u5-linux-x64.tar.gz 2.解压 $ tar -zxvf jdk-8u5-linux-x64.tar.gz 解压出来是一个j ...
- Python 程序如何高效地调试?
作者:Rui L链接:https://www.zhihu.com/question/21572891/answer/26046582来源:知乎著作权归作者所有,转载请联系作者获得授权. 这个要怒答一发 ...
- fusioncharts图例(legend)属性
图例用来在多系列图和混合图中将图形和对应的系列名称联系起来. 从v3.2开始,每个系列的名称前面会展示对应的icon图标,这些图标具有交互作用,用户可以通过点击这些图标来显示或者隐藏对应的数 ...
- EventKit 学习(译)
From:http://docs.xamarin.com/guides/ios/platform_features/introduction_to_eventkit/ 本教程展示了对于如何通过Even ...
- NGUI 修改Shader支持灰色滤镜
之前有人做过,不过效率不高: http://blog.csdn.net/onerain88/article/details/12197277 他的代码: fixed4 frag (v2f i) : ...