https://en.wikipedia.org/wiki/Support_vector_machine

In machine learning, support vector machines (SVMs, also support vector networks[1]) are supervised learning models with associated learning algorithms that analyze data used for classification and regression analysis. Given a set of training examples, each marked as belonging to one or the other of two categories, an SVM training algorithm builds a model that assigns new examples to one category or the other, making it a non-probabilistic binary linear classifier. An SVM model is a representation of the examples as points in space, mapped so that the examples of the separate categories are divided by a clear gap that is as wide as possible. New examples are then mapped into that same space and predicted to belong to a category based on which side of the gap they fall.

Support vector machine的更多相关文章

  1. 6. support vector machine

    1. 了解SVM 1. Logistic regression 与SVM超平面 给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些数据分成两类.如果用x表示数据点,用y表示类别( ...

  2. 使用Support Vector Machine

    使用svm(Support Vector Machine)中要获得好的分类器,最重要的是要选对kernel. 常见的svm kernel包括linear kernel, Gaussian kernel ...

  3. Support Vector Machine (3) : 再谈泛化误差(Generalization Error)

    目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...

  4. Support Vector Machine (2) : Sequential Minimal Optimization

    目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...

  5. Support Vector Machine (1) : 简单SVM原理

    目录 Support Vector Machine (1) : 简单SVM原理 Support Vector Machine (2) : Sequential Minimal Optimization ...

  6. 支持向量机 support vector machine

    SVM(support Vector machine) (1) SVM(Support Vector Machine)是从瓦普尼克(Vapnik)的统计学习理论发展而来的,主要针对小样本数据进行学习. ...

  7. A glimpse of Support Vector Machine

    支持向量机(support vector machine, 以下简称svm)是机器学习里的重要方法,特别适用于中小型样本.非线性.高维的分类和回归问题.本篇希望在正篇提供一个svm的简明阐述,附录则提 ...

  8. 支持向量机SVM(Support Vector Machine)

    支持向量机(Support Vector Machine)是一种监督式的机器学习方法(supervised machine learning),一般用于二类问题(binary classificati ...

  9. 机器学习技法:01 Linear Support Vector Machine

    Roadmap Course Introduction Large-Margin Separating Hyperplane Standard Large-Margin Problem Support ...

  10. 支持向量机(Support Vector Machine,SVM)—— 线性SVM

      支持向量机(Support Vector Machine,简称 SVM)于 1995 年正式发表,由于其在文本分类任务中的卓越性能,很快就成为机器学习的主流技术.尽管现在 Deep Learnin ...

随机推荐

  1. Xamarin.Android开发实践(十四)

    Xamarin.Android之ListView和Adapter 一.前言 如今不管任何应用都能够看到列表的存在,而本章我们将学习如何使用Xamarin去实现它,以及如何使用适配器和自定义适配器(本文 ...

  2. C#控制管理VisualSVN Server

    VisualSVN Server可以用WMI接口管理(Windows Management Instrumentation). VisualSVN Server安装的计算机中,位于%VISUALSVN ...

  3. 测试服务API的_苏飞开发助手_使用说明

    1 工具说明_json对象字符串拼接 2 工具说明_纯字符串拼接

  4. Adapter适配器

    1.概念 *连接后端数据和前端显示的适配器接口 *数据和UI之间的重要连接   2. ArrayAdapter  ArrayAdapter构造器如下: ArrayAdapter(Context con ...

  5. helpDB

    using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Da ...

  6. Xamarin.iOS编译时无法连接苹果系统

    Xamarin.iOS编译时无法连接苹果系统   错误信息:Unable to connect to Address=’***.***.***.***’ with User=’***’   即使Vis ...

  7. python开发_mysqldb安装

    在python的API上面,看到了MySQLdb,即python可以操作mysql数据库 接下来,我就把我这两天的工作给大伙絮叨絮叨: 准备条件: 1.MySQL-python-1.2.4b4.win ...

  8. HDU 5087 (线性DP+次大LIS)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5087 题目大意:求次大LIS的长度.注意两个长度相同的LIS大小比较,下标和大的LIS较大. 解题思 ...

  9. UIView 周围出现黑线的解决方法

    myView.clipsToBounds = YES;

  10. TYVJ P1029 牛棚回声 Label:坑

    背景 USACO OCT09 3RD 描述 奶牛们灰常享受在牛栏中牟叫,因為她们可以听到她们牟声的回音.虽然有时候并不能完全听到完整的回音.Bessie曾经是一个出色的秘书,所以她精确地纪录了所有的牟 ...