【xsy2193】Wallace 最大权闭合子图
题目大意:给你一棵$n$个节点的树$a$,每个点有一个点权$val_i$,同时给你另一棵$n$个节点的树$b$。
现在你需要在树$a$上找一个联通块,满足这些点在树$b$上也是连通的,同时树$a$的这个联通块的点权和要最大。
数据范围:$n≤50$,$-1000≤val_i≤1000$。
我们考虑钦定一个点作为跟,不妨设当前钦定的根为$x$。
我们发现,如果要选择点$y$,那么由点$y$至$x$的路径上的点都需要选(无论是树$a$还是树$b$)
然后这个就变成了一个经典的最大权闭合子图问题
直接最小割判定即可。
时间复杂度:玄学
#include<bits/stdc++.h>
#define M 320
#define N 52
#define INF 19890604
using namespace std; struct edge{int u,v,next;}e[M]={}; int head[M]={},use=;
void add(int x,int y,int z){e[use].u=y;e[use].v=z;e[use].next=head[x];head[x]=use++;}
void Add(int x,int y,int z){add(x,y,z); add(y,x,);} int dis[N]={},S,T; queue<int> q; bool bfs(){
memset(dis,,sizeof(dis));
q.push(S); dis[S]=;
while(!q.empty()){
int u=q.front(); q.pop();
for(int i=head[u];~i;i=e[i].next)
if(e[i].v&&dis[e[i].u]==){
dis[e[i].u]=dis[u]+;
q.push(e[i].u);
}
}
return dis[T];
} int dfs(int x,int flow){
if(x==T) return flow; int sum=;
for(int i=head[x];~i;i=e[i].next)
if(e[i].v&&dis[x]+==dis[e[i].u]){
int k=dfs(e[i].u,min(flow,e[i].v));
e[i].v-=k; e[i^].v+=k;
sum+=k; flow-=k;
if(flow==) return sum;
}
if(flow==) dis[x]=-;
return sum;
} int dinic(){int res=; while(bfs()) res+=dfs(S,<<); return res;} vector<int> G1[N],G2[N];
int val[N]={},f1[N]={},f2[N]={},n; void dfs(int x,int fa,vector<int> G[],int f[]){
f[x]=fa; if(fa) Add(x,fa,INF);
for(int i=;i<G[x].size();i++)
if(G[x][i]!=fa) dfs(G[x][i],x,G,f);
} int solve(int x){
memset(head,-,sizeof(head)); use=;
dfs(x,,G1,f1);
dfs(x,,G2,f2);
S=; T=n+;
for(int i=;i<=n;i++)
if(val[i]>) Add(S,i,val[i]);
else Add(i,T,-val[i]);
return dinic();
} int main(){
int sum=; scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",val+i),sum+=max(,val[i]);
for(int i=,x,y;i<n;i++) scanf("%d%d",&x,&y),x++,y++,G1[x].push_back(y),G1[y].push_back(x);
for(int i=,x,y;i<n;i++) scanf("%d%d",&x,&y),x++,y++,G2[x].push_back(y),G2[y].push_back(x); int maxn=;
for(int i=;i<=n;i++)
maxn=max(maxn,sum-solve(i));
cout<<maxn<<endl;
}
【xsy2193】Wallace 最大权闭合子图的更多相关文章
- BZOJ1565 [NOI2009]植物大战僵尸(拓扑排序 + 最大权闭合子图)
题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=1565 Description Input Output 仅包含一个整数,表示可以 ...
- HDU 3879 Base Station(最大权闭合子图)
经典例题,好像说可以转化成maxflow(n,n+m),暂时只可以勉强理解maxflow(n+m,n+m)的做法. 题意:输入n个点,m条边的无向图.点权为负,边权为正,点权为代价,边权为获益,输出最 ...
- [BZOJ 1497][NOI 2006]最大获利(最大权闭合子图)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1497 分析: 这是在有向图中的问题,且边依赖于点,有向图中存在点.边之间的依赖关系可以 ...
- HDU4971 A simple brute force problem.(强连通分量缩点 + 最大权闭合子图)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=4971 Description There's a company with several ...
- HDU5855 Less Time, More profit(最大权闭合子图)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5855 Description The city planners plan to build ...
- HDU5772 String problem(最大权闭合子图)
题目..说了很多东西 官方题解是这么说的: 首先将点分为3类 第一类:Pij 表示第i个点和第j个点组合的点,那么Pij的权值等于w[i][j]+w[j][i](表示得分) 第二类:原串中的n个点每个 ...
- SCU3109 Space flight(最大权闭合子图)
嗯,裸的最大权闭合子图. #include<cstdio> #include<cstring> #include<queue> #include<algori ...
- hiho 第119周 最大权闭合子图
描述 周末,小Hi和小Ho所在的班级决定举行一些班级建设活动. 根据周内的调查结果,小Hi和小Ho一共列出了N项不同的活动(编号1..N),第i项活动能够产生a[i]的活跃值. 班级一共有M名学生(编 ...
- [HIHO119]网络流五·最大权闭合子图(最大流)
题目链接:http://hihocoder.com/contest/hiho119/problem/1 题意:中文题意. 由于1≤N≤200,1≤M≤200.最极端情况就是中间所有边都是满的,一共有N ...
随机推荐
- 微信小程序组件的使用
1.在page同级目录下新建components文件夹,然后新建目录test,新建组件test 2.新建在page目录下新建目录,然后新建page页面.注意:每新建一个页面,都要修改app.json文 ...
- 01-Javascript简介
Web前端有三层: HTML:从语义的角度,描述页面结构 CSS:从审美的角度,描述样式(美化页面) JavaScript:从交互的角度,描述行为(提升用户体验) JavaScript的组成 Java ...
- C#重点内容之:接口(interface)(一)网络初级示例
这一篇来源于网络,简单介绍了接口的概念 接口是体现面向对象编程思想优越性的一件利器,为什么这么说呢? 首先我们来看,接口是为继承而存在的,如果没有继承,那就自然不需要接口了,既然有继承,那就需要把可能 ...
- linux上搭建solr(用jetty部署)
环境搭建:centos7及solr7版本 描述:最新版本的solr内置了jetty容器,可以支持jetty部署,从而不需要发布到tomcat下面 首先同样先在/usr/local/mypackage上 ...
- sql_id VS hash_value
有没有发现,v$session,v$sql,v$sqlarea,v$sqltext,v$sql_shared_cursor等试图连接的时候经常会用到hash_value,sql_id,但是他们2个之间 ...
- Objective-C的泛型
WWDC2015的明星是Swift.在Swift语言到2.0以后会被开源,这其中包括了protocol扩展和一个新的错误处理API. 苹果的小baby已经长成,并且意料之中的获得了开发者的关注.但是在 ...
- linux下如何编写shell脚本
我对shell脚本的认识,除了执行过同事写的shell 脚本外,其他一无所知,为了让自己强大,我决定自己研究shell脚本,也许在你看来很简答,没必要说这么多废话,但是我希望在我的技术log里记录下来 ...
- kosaraju算法
这个是求一个图有几个强联通分量的算法 先讲一下应该流程 首先输入一个图G,创建一个反向的图GT 图G 对图进行dfs遍历,纪录每个点结束搜索的时间p[i] p[1]=2 p[2]=1 p[3]=5 ...
- AngularJS 承诺 Promise
一.概念解释 全称是未来与承诺,Futures and promises,是一种编程模式,不是AngularJS首创.javascript里有个流行库Q,而AngularJS是$q,其就是从Q引入的: ...
- RPC、RMI、SOAP、WSDL的区别详解
RPC与RMI的区别============================================================================RPC:(Remote Pr ...