题目大意:给你一棵$n$个节点的树$a$,每个点有一个点权$val_i$,同时给你另一棵$n$个节点的树$b$。

现在你需要在树$a$上找一个联通块,满足这些点在树$b$上也是连通的,同时树$a$的这个联通块的点权和要最大。

数据范围:$n≤50$,$-1000≤val_i≤1000$。

我们考虑钦定一个点作为跟,不妨设当前钦定的根为$x$。

我们发现,如果要选择点$y$,那么由点$y$至$x$的路径上的点都需要选(无论是树$a$还是树$b$)

然后这个就变成了一个经典的最大权闭合子图问题

直接最小割判定即可。

时间复杂度:玄学

 #include<bits/stdc++.h>
#define M 320
#define N 52
#define INF 19890604
using namespace std; struct edge{int u,v,next;}e[M]={}; int head[M]={},use=;
void add(int x,int y,int z){e[use].u=y;e[use].v=z;e[use].next=head[x];head[x]=use++;}
void Add(int x,int y,int z){add(x,y,z); add(y,x,);} int dis[N]={},S,T; queue<int> q; bool bfs(){
memset(dis,,sizeof(dis));
q.push(S); dis[S]=;
while(!q.empty()){
int u=q.front(); q.pop();
for(int i=head[u];~i;i=e[i].next)
if(e[i].v&&dis[e[i].u]==){
dis[e[i].u]=dis[u]+;
q.push(e[i].u);
}
}
return dis[T];
} int dfs(int x,int flow){
if(x==T) return flow; int sum=;
for(int i=head[x];~i;i=e[i].next)
if(e[i].v&&dis[x]+==dis[e[i].u]){
int k=dfs(e[i].u,min(flow,e[i].v));
e[i].v-=k; e[i^].v+=k;
sum+=k; flow-=k;
if(flow==) return sum;
}
if(flow==) dis[x]=-;
return sum;
} int dinic(){int res=; while(bfs()) res+=dfs(S,<<); return res;} vector<int> G1[N],G2[N];
int val[N]={},f1[N]={},f2[N]={},n; void dfs(int x,int fa,vector<int> G[],int f[]){
f[x]=fa; if(fa) Add(x,fa,INF);
for(int i=;i<G[x].size();i++)
if(G[x][i]!=fa) dfs(G[x][i],x,G,f);
} int solve(int x){
memset(head,-,sizeof(head)); use=;
dfs(x,,G1,f1);
dfs(x,,G2,f2);
S=; T=n+;
for(int i=;i<=n;i++)
if(val[i]>) Add(S,i,val[i]);
else Add(i,T,-val[i]);
return dinic();
} int main(){
int sum=; scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%d",val+i),sum+=max(,val[i]);
for(int i=,x,y;i<n;i++) scanf("%d%d",&x,&y),x++,y++,G1[x].push_back(y),G1[y].push_back(x);
for(int i=,x,y;i<n;i++) scanf("%d%d",&x,&y),x++,y++,G2[x].push_back(y),G2[y].push_back(x); int maxn=;
for(int i=;i<=n;i++)
maxn=max(maxn,sum-solve(i));
cout<<maxn<<endl;
}

【xsy2193】Wallace 最大权闭合子图的更多相关文章

  1. BZOJ1565 [NOI2009]植物大战僵尸(拓扑排序 + 最大权闭合子图)

    题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=1565 Description Input Output 仅包含一个整数,表示可以 ...

  2. HDU 3879 Base Station(最大权闭合子图)

    经典例题,好像说可以转化成maxflow(n,n+m),暂时只可以勉强理解maxflow(n+m,n+m)的做法. 题意:输入n个点,m条边的无向图.点权为负,边权为正,点权为代价,边权为获益,输出最 ...

  3. [BZOJ 1497][NOI 2006]最大获利(最大权闭合子图)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1497 分析: 这是在有向图中的问题,且边依赖于点,有向图中存在点.边之间的依赖关系可以 ...

  4. HDU4971 A simple brute force problem.(强连通分量缩点 + 最大权闭合子图)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=4971 Description There's a company with several ...

  5. HDU5855 Less Time, More profit(最大权闭合子图)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5855 Description The city planners plan to build ...

  6. HDU5772 String problem(最大权闭合子图)

    题目..说了很多东西 官方题解是这么说的: 首先将点分为3类 第一类:Pij 表示第i个点和第j个点组合的点,那么Pij的权值等于w[i][j]+w[j][i](表示得分) 第二类:原串中的n个点每个 ...

  7. SCU3109 Space flight(最大权闭合子图)

    嗯,裸的最大权闭合子图. #include<cstdio> #include<cstring> #include<queue> #include<algori ...

  8. hiho 第119周 最大权闭合子图

    描述 周末,小Hi和小Ho所在的班级决定举行一些班级建设活动. 根据周内的调查结果,小Hi和小Ho一共列出了N项不同的活动(编号1..N),第i项活动能够产生a[i]的活跃值. 班级一共有M名学生(编 ...

  9. [HIHO119]网络流五·最大权闭合子图(最大流)

    题目链接:http://hihocoder.com/contest/hiho119/problem/1 题意:中文题意. 由于1≤N≤200,1≤M≤200.最极端情况就是中间所有边都是满的,一共有N ...

随机推荐

  1. java sigar.jar

    http://blog.csdn.net/yin_jw/article/details/40151547 DEBUG Sigar - no libsigar-x86-linux.so in java. ...

  2. Win7 MinGW环境测试SDL2.0.3

    下载MinGW版的文件 http://www.libsdl.org/release/SDL2-devel-2.0.3-mingw.tar.gz 解压放到mysys下面 运行Makefile mysys ...

  3. openstack之flavor管理

    概览 [root@cc07 ~]# nova help | grep flavor flavor-access-add Add flavor access for the given tenant. ...

  4. 在vue中没有数据的渲染方法

    1.例如在评论区中,评论一般分为两种形式,一种是有评论,一种是没有评论, 用v-if进行判断,判断的是评论的长度,此时评论的数据应为数组 2.可以computed中记性计算后进行数据的返回在用v-if ...

  5. leetcode - [7]Binary Tree Preorder Traversal

    Given a binary tree, return the preorder traversal of its nodes' values. For example:Given binary tr ...

  6. Java安全技术

    分类     Java平台安全,即JRE安全     开发Java程序(普通程序,服务,applet)安全,即提供安全的开发工具和服务.   用法     用签名和安全策略控制远程的资源访问

  7. Mac使用终端安装Homebrew(brew)

    Homebrew简称brew,OSX上的软件包管理工具,在Mac终端可以通过brew安装.更新.卸载软件. 1.打开终端直接输入下面指令回车: // ruby -e "$(curl -fsS ...

  8. jQuery插件初级练习5答案

    html: $.kafei.fontsize($("p"),"30px").html("123") jQuery: $.kafei={ fo ...

  9. (使用STL自带的排序功能进行排序7.3.2)POJ 2092 Grandpa is Famous(结构体排序)

    /* * POJ_2092.cpp * * Created on: 2013年11月1日 * Author: Administrator */ #include <iostream> #i ...

  10. 使用PerfView监测.NET程序性能(四):折叠,过滤和时间范围选择

    在上一篇文章中,我们使用了Perfview的分组功能.分组功能旨在对某些函数按照某个格式进行分组,以减少视图中的各种无关函数的数量.但仅有分组还不够,有时我们想将一些函数调用信息按某些条件过滤掉,例如 ...