书上的代码:

 # coding: utf-8

 # In[1]:

 import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from pylab import * # In[19]: def show_activation(activation,y_lim=5):
x=np.arange(-10., 10., 0.01)
ts_x = tf.Variable(x)
ts_y =activation(ts_x )
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
y=sess.run(ts_y)
ax = gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.spines['bottom'].set_position(('data',0))
ax.spines['left'].set_position(('data',0))
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
lines=plt.plot(x,y)
plt.setp(lines, color='b', linewidth=3.0)
plt.ylim(y_lim*-1-0.1,y_lim+0.1)
plt.xlim(-10,10) plt.show() # In[20]: show_activation(tf.nn.sigmoid,y_lim=1) # In[4]: show_activation(tf.nn.softsign,y_lim=1) # In[5]: show_activation(tf.nn.tanh,y_lim=1) # In[6]: show_activation(tf.nn.relu,y_lim=10) # In[7]: show_activation(tf.nn.softplus,y_lim=10) # In[8]: show_activation(tf.nn.elu,y_lim=10) # In[14]: a = tf.constant([[1.0,2.0],[1.0,2.0],[1.0,2.0]])
sess = tf.Session()
print(sess.run(tf.sigmoid(a))) # In[ ]:

sigmoid激活函数:

S(x)=1/(1+e-x)

优点在于输出映射在0-1内,单调连续,适合做输出层,求导容易。

缺点在于软饱和性,即当x趋于无穷大时,一阶导数趋于0,容易产生梯度消失,神经网络的改善缓慢或消失。

softsign激活函数:

tanh激活函数:

tanh(x)=(1-e-2x)/(1+e-2x)

也具有软饱和性,收敛速度比sigmoid快,但是仍无法解决梯度消失的问题。

relu激活函数:

f(x)=max(x,0)

缺点:当relu在x<0时硬饱和,即在负半轴,激活函数的一阶导数等于0。

优点:由于x>0时导数为1,所以relu能在正半轴保持梯度的不衰减,缓解梯度消失的问题。

但是随着训练的进行,部分落入硬饱和区,权重无法更新。

softplus激活函数:

relu的平滑版本f(x)=log(1+exp(x))

此外还有的激活函数如下数张图:

等等..............................................................................................

......................................................................................................

输入数据特征相差明显时,tanh效果较好,不明显时,sigmoid较好。二者在使用时需要对输入进行规范化,减少进入平坦区的可能。

relu是比较流行的激活函数,不需要输入量的规范化等...

TensorFlow实现的激活函数可视化的更多相关文章

  1. Tensorboard教程:Tensorflow命名空间与计算图可视化

    Tensorflow命名空间与计算图可视化 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 强烈推荐Tensorflow实战Google深度学习框架 实验平台: Tensorflow ...

  2. 吴裕雄 python 神经网络——TensorFlow 训练过程的可视化 TensorBoard的应用

    #训练过程的可视化 ,TensorBoard的应用 #导入模块并下载数据集 import tensorflow as tf from tensorflow.examples.tutorials.mni ...

  3. tensorflow(3)可视化,日志,调试

    可视化 添加变量 tf.summary.histogram( "weights1", weights1) # 可视化观看变量 还有添加图像和音频. 常量 tf.summary.sc ...

  4. Tensorflow 之模型内容可视化

    TensorFlow模型保存和提取方法 1. tensorflow实现 卷积神经网络CNN:Tensorflow实现(以及对卷积特征的可视化) # 卷积网络的训练数据为MNIST(28*28灰度单色图 ...

  5. 【tensorflow基础】ubuntu-tensorflow可视化工具tensorboard-No dashboards are active for the current data set.

    前言 今天基于tensorflow训练一个检测模型,本应看到训练曲线的,却只见到一个文件events.out.tfevents.1570520647.hostname,后来发现这个文件可以查看训练曲线 ...

  6. TensorFlow(八):tensorboard可视化

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from tensorflow.c ...

  7. Deep Learning基础--26种神经网络激活函数可视化

    在神经网络中,激活函数决定来自给定输入集的节点的输出,其中非线性激活函数允许网络复制复杂的非线性行为.正如绝大多数神经网络借助某种形式的梯度下降进行优化,激活函数需要是可微分(或者至少是几乎完全可微分 ...

  8. tensorflow中常用激活函数和损失函数

    激活函数 各激活函数曲线对比 常用激活函数: tf.sigmoid() tf.tanh() tf.nn.relu() tf.nn.softplus() tf.nn.softmax() tf.nn.dr ...

  9. Tensorflow机器学习入门——网络可视化TensorBoard

    一.在代码中标记要显示的各种量 tensorboard各函数的作用和用法请参考:https://www.cnblogs.com/lyc-seu/p/8647792.html import tensor ...

随机推荐

  1. Centos 7 下 Mysql 5.7 Galera Cluster 集群部署

     一.介绍 传统架构的使用,一直被人们所诟病,因为MySQL的主从模式,天生的不能完全保证数据一致,很多大公司会花很大人力物力去解决这个问题,而效果却一般,可以说,只能是通过牺牲性能,来获得数据一致性 ...

  2. Balanced Numbers (数位DP)

    Balanced Numbers https://vjudge.net/contest/287810#problem/K Balanced numbers have been used by math ...

  3. 有关html5的history api

    从Ajax翻页的问题说起 请想象你正在看一个视频下面的评论,在翻到十几页的时候,你发现一个写得稍长,但非常有趣的评论.正当你想要停下滚轮细看的时候,手残按到了F5.然后,页面刷新了,评论又回到了第一页 ...

  4. Httpclient 表单,json,multipart/form-data 提交 ---总结常用的方法

    最近在项目中,一直在使用HttpClient 中的方法,这里我进行一些方法的汇总,也是结合了一些大牛写的代码,以备不时之需 官话:HttpClient 是Apache Jakarta Common 下 ...

  5. DMZ原理与应用

    DMZ是英文“demilitarized zone”的缩写,中文名称为“隔离区”,“非军事化区”.它是为了解决安装防火墙后外部网络不能访问内部网络服务器的问题,而设立的一个非安全系统与安全系统之间的缓 ...

  6. go语言中的反射reflect

    package main; import ( "fmt" "reflect" ) //反射refection //反射使用TypeOf和ValueOf函数从接口 ...

  7. ROS与深度相机入门教程-在ROS使用kinect v1摄像头

    ROS与深度相机入门教程-在ROS使用kinect v1摄像头 说明: 介绍在ros安装和使用kinect v1摄像头 介绍freenect包 安装驱动 deb安装 $ sudo apt-get in ...

  8. laravel中类似于thinkPHP中trace功能

    答案来自https://segmentfault.com/q/1010000007716945 一楼: 到 https://packagist.org 上搜索你想要的关键词,比如查debugbar 列 ...

  9. table-layout 显示规则以及其他一些零碎的东西

    首先对中文显示的不够好 对中文失效  auto是表格的宽和高都会随着内容增多而改变  而fixed只会增加表格的高度   宽度不会发生改变  table中的td的宽,高会根据内容的多少而变化: fix ...

  10. c#程序设计原则

    单一职责 开闭原则:对扩展开放,对修改封闭. 方法 的职责,一个方法做的事越多,造成问题的可能性会增加. 解决的方法1:就是分拆2:写单独类