传送门

组合数学套路题。

要求ans=∑i=0nCni∗ik,n≤1e9,k≤5000ans=\sum_{i=0}^n C_n^i*i^k,n\le 1e9,k\le 5000ans=∑i=0n​Cni​∗ik,n≤1e9,k≤5000


这道题需要用到一个组合数的公式:nk=∑i=0ns2{k,i}Anin^k=\sum_{i=0}^ns_2\{k,i\}A_n^ink=∑i=0n​s2​{k,i}Ani​

证明可以用组合意义:相当于是把k个不同的球放入k个不同的盒子里(每个盒子个数任意)的方案数等于先枚举使用盒子的个数i,然后把n个球分进i个盒子,然后给盒子编号。

所以原式=∑i=0nCni∗∑j=0ks2{k,j}Aij=\sum_{i=0}^nC_n^i*\sum_{j=0}^ks_2\{k,j\}A_i^j=∑i=0n​Cni​∗∑j=0k​s2​{k,j}Aij​

=∑i=0n∑j=0ks2{k,j}AijCni=\sum_{i=0}^n\sum_{j=0}^ks_2\{k,j\}A_i^jC_n^i=∑i=0n​∑j=0k​s2​{k,j}Aij​Cni​

=∑j=0ks2{k,j}∑i=0kCniAij=\sum_{j=0}^ks_2\{k,j\}\sum_{i=0}^kC_n^iA_i^j=∑j=0k​s2​{k,j}∑i=0k​Cni​Aij​

然后又是套路,把后面一个求和公式用组合意义化简:

∑i=0nCniAij\sum_{i=0}^nC_n^iA_i^j∑i=0n​Cni​Aij​相当于先从n个数中选出来i个数来组合再从i个数中选出j个数来排列,注意这个地方j是定值。

那么从总体思考,相当于就是从n个数中选出了j个数来排列,剩下的n−jn-jn−j个数都可选可不选。

所以有:∑i=0nCniAij=Anj2n−j\sum_{i=0}^nC_n^iA_i^j=A_n^j2^{n-j}∑i=0n​Cni​Aij​=Anj​2n−j

所以推出原式=∑j=0ks2{k,j}Anj2n−j=\sum_{j=0}^ks_2\{k,j\}A_n^j2^{n-j}=∑j=0k​s2​{k,j}Anj​2n−j

至此,已经可以O(n2)O(n^2)O(n2)求出答案了。

代码:

#include<bits/stdc++.h>
#define ri register int
using namespace std;
const int mod=1e9+7,K=5e3+5;
typedef long long ll;
int ans=0,n,k,s2[K][K],up;
inline void init(){
	s2[1][1]=1,up=min(n,k);
	for(ri i=2;i<=k;++i)for(ri j=1;j<=i;++j)s2[i][j]=((ll)s2[i-1][j-1]+(ll)s2[i-1][j]*j%mod)%mod;
}
inline int ksm(int a,int p){int ret=1;for(;p;p>>=1,a=(ll)a*a%mod)if(p&1)ret=(ll)ret*a%mod;return ret;}
inline int A(int n,int m){int ret=1;for(ri i=n-m+1;i<=n;++i)ret=(ll)ret*i%mod;return ret;}
int main(){
	scanf("%d%d",&n,&k),init();
	for(ri i=1;i<=up;++i)(ans+=(ll)s2[k][i]*A(n,i)%mod*ksm(2,n-i)%mod)%=mod;
	cout<<ans;
	return 0;
}

2018.12.14 codeforces 932E. Team Work(组合数学)的更多相关文章

  1. 2018.12.14 codeforces 922E. Birds(分组背包)

    传送门 蒟蒻净做些水题还请大佬见谅 没错这又是个一眼的分组背包. 题意简述:有n棵树,每只树上有aia_iai​只鸟,第iii棵树买一只鸟要花cic_ici​的钱,每买一只鸟可以奖励bbb块钱,从一棵 ...

  2. codeforces 932E Team Work(组合数学、dp)

    codeforces 932E Team Work 题意 给定 \(n(1e9)\).\(k(5000)\).求 \(\Sigma_{x=1}^{n}C_n^xx^k\). 题解 解法一 官方题解 的 ...

  3. Codeforces 932E Team work 【组合计数+斯特林数】

    Codeforces 932E Team work You have a team of N people. For a particular task, you can pick any non-e ...

  4. 2018.12.14 浪在ACM 集训队第九次测试赛

    浪在ACM 集训队第九次测试赛 B Battleship E Masha and two friends B 传送门 题意: 战船上有占地n*n的房间cells[][],只由当cells[i][j]= ...

  5. Codeforces 932E Team Work 数学

    Team Work 发现网上没有我这种写法.. i ^ k我们可以理解为对于每个子集我们k个for套在一起数有多少个. 那么我们问题就变成了 任意可重复位置的k个物品属于多少个子集. 然后我们枚举k个 ...

  6. 2018.12.29 codeforces 940E. Cashback(线性dp)

    传送门 题意:给出一个nnn个数的序列,要求将序列分成若干段,对于一段长度为kkk的自动删去最小的⌊kc⌋\left \lfloor \frac{k}{c} \right \rfloor⌊ck​⌋个数 ...

  7. 2018.12.19 codeforces 1092F. Tree with Maximum Cost(换根dp)

    传送门 sbsbsb树形dpdpdp题. 题意简述:给出一棵边权为1的树,允许选任意一个点vvv为根,求∑i=1ndist(i,v)∗ai\sum_{i=1}^ndist(i,v)*a_i∑i=1n​ ...

  8. 2018.12.15 codeforces 920F. SUM and REPLACE(线段树)

    传送门 线段树入门题. 给你一个序列:支持区间修改成自己的约数个数,区间求和. 实际上跟区间开方一个道理. 2的约数个数为2,1的约数个数为1,因此只要区间的最大值小于3就不用修改否则就暴力修改. 因 ...

  9. 2018.12.08 codeforces 939E. Maximize!(二分答案)

    传送门 二分答案好题. 题意简述:要求支持动态在一个数列队尾加入一个新的数(保证数列单增),查询所有子数列的 最大值减平均值 的最大值. 然而网上一堆高人是用三分做的. 我们先考虑当前的答案有可能由什 ...

随机推荐

  1. Compare Version Numbers(STRING-TYPE CONVERTION)

    QUESTION Compare two version numbers version1 and version1.If version1 > version2 return 1, if ve ...

  2. ORACLE的强制索引

    在一些场景下,可能ORACLE不会自动走索引,这时候,如果对业务清晰,可以尝试使用强制索引,测试查询语句的性能. 以EMP表为例: 先在EMP表中建立唯一索引,如图. 普通搜索: SELECT * F ...

  3. unity填色绘画游戏Drawing Coloring Extra Edition

    . 下载地址: https://item.taobao.com/item.htm?spm=0.7095261.0.0.2e611debLdF3mf&id=576153069662

  4. sourceforge

    sourceforge SourceForge.net,又称SF.net,是开源软件开发者进行开发管理的集中式场所. SourceForge.net由VA Software提供主机,并运行Source ...

  5. Angular之替换根组件

    一 在index.html中,替换根组件选择器 <!doctype html> <html lang="en"> <head> <meta ...

  6. delete[] p与 delete p

    基本类型的对象没有析构函数,所以回收基本类型组成的数组空间用 delete 和 delete[] 都是应该可以的:但是对于类对象数组,只能用 delete[].对于 new 的单个对象,只能用 del ...

  7. Runnable如何传参

    private class TimerUpdateTask implements Runnable{ private boolean isUnion = false; public TimerUpda ...

  8. linux下安装以及升级npm,node的方法

    1.最开始使用阿里云文档提供的安装方法一直都是失败的状态,后来找到了新的方法重新安装,按照以下操作一步一步的走即可实现,亲测可用 2.安装完之后,会发现npm和node的版本都偏低,需要重新升级以下, ...

  9. C#中委托

    委托是一种安全地封装方法的类型,它与 C 和 C++ 中的函数指针类似.与 C 中的函数指针不同,委托是面向对象的.类型安全的和保险的.一个委托类型是代表与特定参数列表和返回类型的方法的引用类型.实例 ...

  10. C# Request.RawUrl与Request.Url的区别

    RawUrl——不包含域名及端口的地址 Url——包含域名,最全