float,double等精度丢失问题 float,double内存表示
问题提出:12.0f-11.9f=0.10000038,"减不尽"为什么?
来自MSDN的解释:
http://msdn.microsoft.com/zh-cn/c151dt3s.aspx
为何浮点数可能丢失精度浮点十进制值通常没有完全相同的二进制表示形式。 这是 CPU 所采用的浮点数据表示形式的副作用。 为此,可能会经历一些精度丢失,并且一些浮点运算可能会产生意外的结果。
导致此行为的原因是下面之一:
十进制数的二进制表示形式可能不精确。
使用的数字之间类型不匹配(例如,混合使用浮点型和双精度型)。
为解决此行为,大多数程序员或是确保值比需要的大或者小,或是获取并使用可以维护精度的二进制编码的十进制 (BCD) 库。
现在我们就详细剖析一下浮点型运算为什么会造成精度丢失?
1、小数的二进制表示问题
首先我们要搞清楚下面两个问题:
(1) 十进制整数如何转化为二进制数
算法很简单。举个例子,11表示成二进制数:
11/2=5 余 1
5/2=2 余 1
2/2=1 余 0
1/2=0 余 1
0结束 11二进制表示为(从下往上):1011
这里提一点:只要遇到除以后的结果为0了就结束了,大家想一想,所有的整数除以2是不是一定能够最终得到0。换句话说,所有的整数转变为二进制数的算法会不会无限循环下去呢?绝对不会,整数永远可以用二进制精确表示,但小数就不一定了。
(2) 十进制小数如何转化为二进制数
算法是乘以2直到没有了小数为止。举个例子,0.9表示成二进制数
0.9*2=1.8 取整数部分 1
0.8(1.8的小数部分)*2=1.6 取整数部分 1
0.6*2=1.2 取整数部分 1
0.2*2=0.4 取整数部分 0
0.4*2=0.8 取整数部分 0
0.8*2=1.6 取整数部分 1
0.6*2=1.2 取整数部分 0
......... 0.9二进制表示为(从上往下): 1100100100100......
注意:上面的计算过程循环了,也就是说*2永远不可能消灭小数部分,这样算法将无限下去。很显然,小数的二进制表示有时是不可能精确的。其实道理很简单,十进制系统中能不能准确表示出1/3呢?同样二进制系统也无法准确表示1/10。这也就解释了为什么浮点型减法出现了"减不尽"的精度丢失问题。
2、float型在内存中的存储
众所周知、Java 的float型在内存中占4个字节。float的32个二进制位结构如下
float内存存储结构
4bytes 31 30 29----23 22----0
表示 实数符号位 指数符号位 指数位 有效数位
其中符号位1表示正,0表示负。有效位数位24位,其中一位是实数符号位。
将一个float型转化为内存存储格式的步骤为:
(1)先将这个实数的绝对值化为二进制格式,注意实数的整数部分和小数部分的二进制方法在上面已经探讨过了。
(2)将这个二进制格式实数的小数点左移或右移n位,直到小数点移动到第一个有效数字的右边。
(3)从小数点右边第一位开始数出二十三位数字放入第22到第0位。
(4)如果实数是正的,则在第31位放入“0”,否则放入“1”。
(5)如果n 是左移得到的,说明指数是正的,第30位放入“1”。如果n是右移得到的或n=0,则第30位放入“0”。
(6)如果n是左移得到的,则将n减去1后化为二进制,并在左边加“0”补足七位,放入第29到第23位。如果n是右移得到的或n=0,则将n化为二进制后在左边加“0”补足七位,再各位求反,再放入第29到第23位。
举例说明: 11.9的内存存储格式
(1) 将11.9化为二进制后大约是"1011.1110011001100110011001100..."。
(2) 将小数点左移三位到第一个有效位右侧: "1. 01111100110011001100110"。保证有效位数24位,右侧多余的截取(误差在这里产生了)。
(3) 这已经有了二十四位有效数字,将最左边一位“1”去掉,得到“01111100110011001100110”共23bit。将它放入float存储结构的第22到第0位。
(4) 因为11.9是正数,因此在第31位实数符号位放入“0”。
(5) 由于我们把小数点左移,因此在第30位指数符号位放入“1”。
(6) 因为我们是把小数点左移3位,因此将3减去1得2,化为二进制,并补足7位得到0000010,放入第29到第23位。
最后表示11.9为: 01000001001111100110011001100110
再举一个例子:0.2356的内存存储格式
(1)将0.2356化为二进制后大约是0.00111100010100000100100000。
(2)将小数点右移三位得到1.11100010100000100100000。
(3)从小数点右边数出二十三位有效数字,即11100010100000100100000放
入第22到第0位。
(4)由于0.2356是正的,所以在第31位放入“0”。
(5)由于我们把小数点右移了,所以在第30位放入“0”。
(6)因为小数点被右移了3位,所以将3化为二进制,在左边补“0”补足七
位,得到0000011,各位取反,得到1111100,放入第29到第23位。
最后表示0.2356为:001111100 11100010100000100100000
将一个内存存储的float二进制格式转化为十进制的步骤:
(1)将第22位到第0位的二进制数写出来,在最左边补一位“1”,得到二十四位有效数字。将小数点点在最左边那个“1”的右边。
(2)取出第29到第23位所表示的值n。当30位是“0”时将n各位求反。当30位是“1”时将n增1。
(3)将小数点左移n位(当30位是“0”时)或右移n位(当30位是“1”时),得到一个二进制表示的实数。
(4)将这个二进制实数化为十进制,并根据第31位是“0”还是“1”加上正号或负号即可。
3、浮点型的减法运算
浮点加减运算过程比定点运算过程复杂。完成浮点加减运算的操作过程大体分为四步:
(1) 0操作数的检查;
如果判断两个需要加减的浮点数有一个为0,即可得知运算结果而没有必要再进行有序的一些列操作。
(2) 比较阶码(指数位)大小并完成对阶;
两浮点数进行加减,首先要看两数的指数位是否相同,即小数点位置是否对齐。若两数指数位相同,表示小数点是对齐的,就可以进行尾数的加减运算。反之,若两数阶码不同,表示小数点位置没有对齐,此时必须使两数的阶码相同,这个过程叫做对阶。
如何对阶(假设两浮点数的指数位为Ex和Ey):
通过尾数的移位以改变Ex或Ey,使之相等。由于浮点表示的数多是规格化的,尾数左移会引起最高有位的丢失,造成很大误差;而尾数右移虽引起最低有效位的丢失,但造成的误差较小,因此,对阶操作规定使尾数右移,尾数右移后使阶码作相应增加,其数值保持不变。很显然,一个增加后的阶码与另一个相等,所增加的阶码一定是小阶。因此在对阶时,总是使小阶向大阶看齐,即小阶的尾数向右移位(相当于小数点左移),每右移一位,其阶码加1,直到两数的阶码相等为止,右移的位数等于阶差△E。
(3) 尾数(有效数位)进行加或减运算;
对阶完毕后就可有效数位求和。不论是加法运算还是减法运算,都按加法进行操作,其方法与定点加减运算完全一样。
(4) 结果规格化并进行舍入处理。
略
4、计算12.0f-11.9f
12.0f 的内存存储格式为: 01000001010000000000000000000000
11.9f 的内存存储格式为: 01000001001111100110011001100110
可见两数的指数位完全相同,只要对有效数位进行减法即可。
12.0f-11.9f 结果: 01000001000000011001100110011010
将结果还原为十进制为: 0.00011001100110011010=0.10000038
详细的分析
由于对float或double 的使用不当,可能会出现精度丢失的问题。问题大概情况可以通过如下代码理解:
view plaincopy to clipboardprint?
public class FloatDoubleTest {
public static void main(String[] args) {
float f = 20014999;
double d = f;
double d2 = 20014999;
System.out.println("f=" + f);
System.out.println("d=" + d);
System.out.println("d2=" + d2);
}
}
public class FloatDoubleTest {
public static void main(String[] args) {
float f = 20014999;
double d = f;
double d2 = 20014999;
System.out.println("f=" + f);
System.out.println("d=" + d);
System.out.println("d2=" + d2);
}
}
得到的结果如下:
f=2.0015E7
d=2.0015E7
d2=2.0014999E7
从输出结果可以看出double 可以正确的表示20014999 ,而float 没有办法表示20014999 ,得到的只是一个近似值。这样的结果很让人讶异。20014999 这么小的数字在float下没办法表示。于是带着这个问题,做了一次关于float和double学习,做个简单分享,希望有助于大家对java 浮点数的理解。
关于 java 的 float 和 double
Java 语言支持两种基本的浮点类型: float 和 double 。java 的浮点类型都依据 IEEE 754 标准。IEEE 754 定义了32 位和 64 位双精度两种浮点二进制小数标准。
IEEE 754 用科学记数法以底数为 2 的小数来表示浮点数。32 位浮点数用 1 位表示数字的符号,用 8 位来表示指数,用 23 位来表示尾数,即小数部分。作为有符号整数的指数可以有正负之分。小数部分用二进制(底数 2 )小数来表示。对于64 位双精度浮点数,用 1 位表示数字的符号,用 11 位表示指数,52 位表示尾数。如下两个图来表示:
float(32位):
double(64位):
都是分为三个部分:
(1) 一个单独的符号位s 直接编码符号s 。
(2)k 位的幂指数E ,移码表示 。
(3)n 位的小数,原码表示 。
那么 20014999 为什么用 float 没有办法正确表示?
结合float和double的表示方法,通过分析 20014999 的二进制表示就可以知道答案了。
以下程序可以得出 20014999 在 double 和 float 下的二进制表示方式。
view plaincopy to clipboardprint?
public class FloatDoubleTest3 {
public static void main(String[] args) {
double d = 8;
long l = Double.doubleToLongBits(d);
System.out.println(Long.toBinaryString(l));
float f = 8;
int i = Float.floatToIntBits(f);
System.out.println(Integer.toBinaryString(i));
}
}
public class FloatDoubleTest3 {
public static void main(String[] args) {
double d = 8;
long l = Double.doubleToLongBits(d);
System.out.println(Long.toBinaryString(l));
float f = 8;
int i = Float.floatToIntBits(f);
System.out.println(Integer.toBinaryString(i));
}
}
输出结果如下:
Double:100000101110011000101100111100101110000000000000000000000000000
Float:1001011100110001011001111001100
对于输出结果分析如下。对于都不 double 的二进制左边补上符号位 0 刚好可以得到 64 位的二进制数。根据double的表示法,分为符号数、幂指数和尾数三个部分如下:
0 10000010111 0011000101100111100101110000000000000000000000000000
对于 float 左边补上符号位 0 刚好可以得到 32 位的二进制数。 根据float的表示法, 也分为 符号数、幂指数和尾数三个部分如下 :
0 10010111 00110001011001111001100
绿色部分是符号位,红色部分是幂指数,蓝色部分是尾数。
对比可以得出:符号位都是 0 ,幂指数为移码表示,两者刚好也相等。唯一不同的是尾数。
在 double 的尾数为: 001100010110011110010111 0000000000000000000000000000 ,省略后面的零,至少需要24位才能正确表示 。
而在 float 下面尾数为: 00110001011001111001100 ,共 23 位。
为什么会这样?原因很明显,因为 float尾数 最多只能表示 23 位,所以 24 位的 001100010110011110010111 在 float 下面经过四舍五入变成了 23 位的 00110001011001111001100 。所以 20014999 在 float 下面变成了 20015000 。
也就是说 20014999 虽然是在float的表示范围之内,但 在 IEEE 754 的 float 表示法精度长度没有办法表示出 20014999 ,而只能通过四舍五入得到一个近似值。
float,double等精度丢失问题 float,double内存表示的更多相关文章
- iOS - Json解析精度丢失处理(NSString, Double, Float)
开发中处理处理价格金额问题, 后台经常返回float类型, 打印或转成NSString都会有精度丢失问题, 因此使用系统自带的NSDecimalNumber做处理, 能解决这问题:经过测试其实系统NS ...
- Java:利用BigDecimal类巧妙处理Double类型精度丢失
目录 本篇要点 经典问题:浮点数精度丢失 十进制整数如何转化为二进制整数? 十进制小数如何转化为二进制数? 如何用BigDecimal解决double精度问题? new BigDecimal(doub ...
- C# double类型精度丢失问题
我们先看一段代码,可以在控制台程序中执行看看结果 { double d = 500; double d1 = 233.84; double d2 = d - d1; //d2=266.15999999 ...
- double发生精度丢失的解决办法
发生精度丢失的原因: 个人理解:机器在运行时,使用2进制形式的计数方式,而我们日常生活中的计算是10进制的,对于整数的加减乘除,double还能适用,但是对于有小数的,则容易发生精度丢失,即用2进制表 ...
- String转double或者float会有精度丢失的问题
float [] value=new float[5]; value[0]=Float.parseFloat(rs.getString(1)); value[1]=Float.parseFloat(r ...
- java下double相乘精度丢失问题
比如 System.out.println(0.14*100); 输出: 14.000000000000002 解决方法: BigDecimal b = new BigDecimal(String.v ...
- 【转】JAVA程序中Float和Double精度丢失问题
原文网址:http://blog.sina.com.cn/s/blog_827d041701017ctm.html 问题提出:12.0f-11.9f=0.10000038,"减不尽" ...
- java防止double和float精度丢失的方法
在浮点数当中做运算时经常会出现精度丢失的情况,如果做项目不作处理的话会对商家造成很大的影响的.项目尤其是金融相关的项目对这些运算的精度要求较高. 问题原因:首先计算机进行的是二进制运算,我们输入的十进 ...
- java中double和float精度丢失问题
为什么会出现这个问题呢,就这是java和其它计算机语言都会出现的问题,下面我们分析一下为什么会出现这个问题:float和double类型主要是为了科学计算和工程计算而设计的.他们执行二进制浮点运算,这 ...
随机推荐
- EDMA3 笔记
A-synchronized和AB-synchronized传输在1个frame传输完成后地址计算有所不同. A-synchronized: last array in the frame ...
- 004.KVM日常管理1
一 常用命令 1.1 查看虚机列表及状态 [root@kvm-host ~]# virsh list --all 1.2 连接虚机 [root@kvm-host ~]# virsh console v ...
- 日志回滚:python(日志分割)
日志回滚:python 什么是日志回滚? 答: 将日志信息输出到一个单一的文件中,随着应用程序的持续使用,该日志文件会越来越庞大,进而影响系统的性能.因此,有必要对日志文件按某种条件进行切分,要切分日 ...
- 试图(View)
试图是通过命名约定与动作方法想关联的.这个动作方法称为Index,控制器名称为Home; 添加试图,试图名与该试图相关联的动作方法的名称一致.
- BZOJ.5312.冒险(线段树)
题目链接 \(Description\) 维护一个序列,支持区间and/or一个数.区间查询最大值. \(Solution\) 维护区间最大值?好像没什么用,修改的时候和暴力差不多. 我们发现有时候区 ...
- 【BZOJ-2595】游览计划 斯坦纳树
2595: [Wc2008]游览计划 Time Limit: 10 Sec Memory Limit: 256 MBSec Special JudgeSubmit: 1518 Solved: 7 ...
- 用SWD调试接口测量代码运行时间 ( SWO )
用SWD调试接口测量代码运行时间 关于时间测量的种种问题 在嵌入式中,我们经常需要测量某段代码的执行时间或测量事件触发的时间,常规的思路是: 1:在测量起始点,反转电平2:在测量结束点,再次反转电平 ...
- 推荐一个文献翻译软件--Deja Vu X
首先我的这篇博客推荐的软件并非你觉得翻译精确度有多高的软件,假设是这种话就不用往下看了,免得浪费时间,仅仅是一个对于翻译文献非常方便的工具,方面在哪请看下文. 我是不会告诉你凡事用过这个软件的人都说好 ...
- hdu 4865 Peter's Hobby
Peter's Hobby Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) To ...
- 从内存中加载DLL DELPHI版
//从内存中加载DLL DELPHI版 unit MemLibrary; interface uses Windows; function memLoadLibrary(pLib: Pointer): ...