m^k就是让m的每个质因子个数都增加了k倍

求m的质因子 在n!中增加了多少倍就好了,因为m^k 表示每一个质因子增加相同的倍数k  所以我们需要找到增加倍数最小的那个。。短板效应  其它质因子多增加的倍数都合并一下 就是n!的另一个因数了

其他的乘到一起 就是N了。。。

因为n!的很大。。但n!是从1到n的乘积 所以从1到n的这些数所包含的质因子PPP3 ```Pc  个数的和就是 n!中对应质因子的个数。。

我这种蒟蒻就只适合做模板图论。。。。

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff; LL primes[maxn], vis[maxn];
int base1[maxn], mi1[maxn], mi2[maxn];
int n, m;
int ans = ; void init()
{
mem(vis, );
for(int i=; i<maxn; i++)
if(!vis[i])
{
primes[ans++] = i;
for(LL j=(LL)i*i; j<maxn; j+=i)
vis[j] = ;
}
} int main()
{
int T, kase = ;
init();
cin>> T;
while(T--)
{
mem(base1, );
mem(mi1, );
mem(mi2, );
int res;
cin>> m >> n;
int cnt = ; for(int i=; i<ans && primes[i] * primes[i] <= m; i++)
{
int cnt2 = ;
while(m % primes[i] == )
{
m /= primes[i];
cnt2++;
}
if(cnt2 > )
{
base1[cnt++] = primes[i];
mi2[primes[i]] += cnt2;
}
}
if(m > )
{
base1[cnt++] = m;
mi2[m] += ;
} for(int j=; j<=n; j++)
{
res = j; for(int i=; i<cnt; i++)
{ int cnt2 = ;
while(res % base1[i] == )
{
res /= base1[i];
cnt2++;
}
if(cnt2 > )
{ mi1[base1[i]] += cnt2;
}
}
} int minn = INF;
for(int i=; i<cnt; i++)
{
minn = min(minn, mi1[base1[i]]/mi2[base1[i]]);
}
printf("Case %d:\n",++kase);
if(minn)
cout<< minn <<endl;
else
cout<< "Impossible to divide" <<endl;
}
return ; }

Again Prime? No Time. UVA - 10780(质因子分解)的更多相关文章

  1. UVA 10780 Again Prime No Time.(数学)

    给定两个整数m和n,求最大的k使得m^k是n!的约数 对m质因子分解,然后使用勒让德定理求得n!包含的质数p的阶数,min(b[i] / a[i])即为结果k, 若为0无解 #include<c ...

  2. Lightoj-1356 Prime Independence(质因子分解)(Hopcroft-Karp优化的最大匹配)

    题意: 找出一个集合中的最大独立集,任意两数字之间不能是素数倍数的关系. 思路: 最大独立集,必然是二分图. 最大数字50w,考虑对每个数质因子分解,然后枚举所有除去一个质因子后的数是否存在,存在则建 ...

  3. P2043 质因子分解

    P2043 质因子分解 题目描述 对N!进行质因子分解. 输入输出格式 输入格式: 输入数据仅有一行包含一个正整数N,N<=10000. 输出格式: 输出数据包含若干行,每行两个正整数p,a,中 ...

  4. P2043 质因子分解(阶乘的质因数分解)

    P2043 质因子分解 对$n!$进行质因数分解的一种高效算法 首先,筛出$<=n$的素数 蓝后,对$n$反复除以$prime$,同时$cnt+=n/prime$ $n!$中含有该$prime$ ...

  5. LightOJ1336 Sigma Function —— 质因子分解、约数和为偶数

    题目链接:https://vjudge.net/problem/LightOJ-1336 1336 - Sigma Function    PDF (English) Statistics Forum ...

  6. BZOJ 1485: [HNOI2009]有趣的数列 [Catalan数 质因子分解]

    1485: [HNOI2009]有趣的数列 Description 我们称一个长度为2n的数列是有趣的,当且仅当该数列满足以下三个条件: (1)它是从1到2n共2n个整数的一个排列{ai}: (2)所 ...

  7. A 洛谷 P3601 签到题 [欧拉函数 质因子分解]

    题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...

  8. POJ1845:Sumdiv(求因子和+逆元+质因子分解)好题

    题目链接:http://poj.org/problem?id=1845 定义: 满足a*k≡1 (mod p)的k值就是a关于p的乘法逆元. 为什么要有乘法逆元呢? 当我们要求(a/b) mod p的 ...

  9. luogu P2043 质因子分解

    题目描述 对N!进行质因子分解. 输入输出格式 输入格式: 输入数据仅有一行包含一个正整数N,N<=10000. 输出格式: 输出数据包含若干行,每行两个正整数p,a,中间用一个空格隔开.表示N ...

随机推荐

  1. 利用WebHook实现PHP自动部署Git代码

    平时项目代码都托管在Coding,然后每次提交了代码之后都要SSH到服务器上去git pull一次,很是繁琐,在看了OverTrue的<使用PHP脚本远程部署git项目>后就尝试在自己服务 ...

  2. tomcat-在eclipse中配置tomcat容器的内存

    eclipse下的tomcat内存设置大小 在eclipse中设置: 设置步骤如下: 1.点击eclipse上的debug图标旁边的下拉箭头 2.然后选择Run Configurations, 3.系 ...

  3. Scala--特质

    一.为什么没有多重继承 c++允许多重继承 Java不允许多重继承,类只能继承一个超类,可以实现任意数量的接口. 如何继承这两个抽象基类? Scala提供“特质”而非接口:特质可以同时抽象方法和具体方 ...

  4. kettle学习笔记(十)——数据检验、统计、分区与JS脚本

    一.概述 数据剖析和数据检验: 用于数据的检查.清洗 . 统计步骤: 提供数据采样和统计的功能 分区: 根据数据里某个字段的值,拆分成多个数据块.输出到不同的库表和文件中. 脚本: Javascrip ...

  5. 大数据入门第十六天——流式计算之storm详解(三)集群相关进阶

    一.集群提交任务流程分析 1.集群提交操作 参考:https://www.jianshu.com/p/6783f1ec2da0 2.任务分配与启动流程 参考:https://www.cnblogs.c ...

  6. WFP loading 窗口显示 SplashScreen

    public partial class App : Application { protected override void OnStartup(StartupEventArgs e) { Spl ...

  7. Hadoop开发第3期---Hadoop的伪分布式安装

    一.准备工作 1. 远程连接工具的安装 PieTTY 是在PuTTY 基础上开发的,改进了Putty 的用户界面,提供了多语种支持.Putty 作为远程连接linux 的工具,支持SSH 和telne ...

  8. identityServer4 中的概念(Scope,claim)

    在IdentityServer中好多地方出现这几个词,这单词的解释也有好多大神解释过: chaim: ASP.NET Core 之 Identity 入门(一),这个是asp.net identity ...

  9. Windows Server 2003出现Directory Listing Denied This Virtual Directory does not allow contents to be listed.的解决方案

    Directory Listing DeniedThis Virtual Directory does not allow contents to be listed. 是目录权限无法访问的问题 解决 ...

  10. 教你用PS制作雨天窗户上透明水滴字

    雨天窗户上透明水滴字制作方法很简单,主要利用图层样式来实现.学习后可以让你对图层样式有更好的了解,认识. 先看下完成后的效果图: 步骤1: 在Photoshop中我们新建或Ctrl+N,创建1920x ...