Description

作为对奶牛们辛勤工作的回报,Farmer John决定带她们去附近的大城市玩一天。旅行的前夜,奶牛们在兴奋地

讨论如何最好地享受这难得的闲暇。 很幸运地,奶牛们找到了一张详细的城市地图,上面标注了城市中所有

L(2 <= L <= 1000)座标志性建筑物(建筑物按1..L顺次编号),以及连接这些建筑物的P(2 <= P <= 5000)条道路

。按照计划,那天早上Farmer John会开车将奶牛们送到某个她们指定的建筑物旁边,等奶牛们完成她们的整个

旅行并回到出发点后,将她们接回农场。由于大城市中总是寸土寸金,所有的道路都很窄,政府不得不把它们都

设定为通行方向固定的单行道。 尽管参观那些标志性建筑物的确很有意思,但如果你认为奶牛们同样享受穿行于

大城市的车流中的话,你就大错特错了。与参观景点相反,奶牛们把走路定义为无趣且令她们厌烦的活动。对于

编号为i的标志性建筑物,奶牛们清楚地知道参观它能给自己带来的乐趣值F_i (1 <= F_i <= 1000)。相对于奶牛们

在走路上花的时间,她们参观建筑物的耗时可以忽略不计。 奶牛们同样仔细地研究过城市中的道路。她们知道

第i条道路两端的建筑物 L1_i和L2_i(道路方向为L1_i -> L2_i),以及她们从道路的一头走到另一头所需要的

时间T_i(1 <= T_i <= 1000)。 为了最好地享受她们的休息日,奶牛们希望她们在一整天中平均每单位时间内获得

的乐趣值最大。当然咯,奶牛们不会愿意把同一个建筑物参观两遍,也就是说,虽然她们可以两次经过同一个建筑

物,但她们的乐趣值只会增加一次。顺便说一句,为了让奶牛们得到一些锻炼,Farmer John要求奶牛们参观至少2个

建筑物。 请你写个程序,帮奶牛们计算一下她们能得到的最大平均乐趣值。

solution

二分答案$mid$

记环上的边$e(u, v)$和点$ u $为,则$tmp = \sum u / \sum e$, 化为 $tmp *  \sum e - \sum u = 0$

如果$mid < tmp$, 则 $mid * \sum e - \sum u < 0$, 然后把 $l$ 记为$mid$继续二分, 不然就把 $r$ 记为$mid$ 继续二分

因为要使答案尽可能大, 所以我们希望找出一个环使得 $mid * \sum e - \sum u < 0$。

那么我们就可以在每次check时 构造一个新图, 每条边的权值为 $mid * e - u$。 然后找到一个负环即可check。

找负环用spfa实现

代码

 #include<cstring>
#include<queue>
#include<cstdio>
#include<algorithm>
#define rd read()
#define rep(i,a,b) for(register int i = (a); i <= (b); ++i)
#define per(i,a,b) for(register int i = (a); i >= (b); --i)
using namespace std; const int N = 1e3 + ;
const int M = 5e3 + ;
const int inf = ~0U >> ;
const double eps = 1e-; int n, m;
int head[N], tot, a[N], cnt[N], vis[N];
int head2[N], tot2;
double f[N]; queue<int> q; int read() {
int X = , p = ; char c = getchar();
for(; c > '' || c < ''; c = getchar()) if(c == '-') p = -;
for(; c >= '' && c <= ''; c = getchar()) X = X * + c - '';
return X * p;
} struct edge {
int fr, nxt, to;
double val;
}e[M << ], E[M << ]; void add(int u, int v, double val) {
e[++tot].to = v;
e[tot].val = val;
e[tot].nxt = head[u];
e[tot].fr = u;
head[u] = tot;
} void add2(int u, int v, double val) {
E[++tot2].to = v;
E[tot2].val = val;
E[tot2].nxt = head2[u];
E[tot2].fr = u;
head2[u] = tot2;
} int ch(int x) {
return ((x + ) ^ ) - ;
} int spfa() {
f[] = ;
q.push();
for(int u; !q.empty();) {
u = q.front(); q.pop();
vis[u] = ;
for(int i = head2[u]; i; i = E[i].nxt) {
int nt = E[i].to;
double upd = f[u] + E[i].val;
if(f[nt] + eps < upd) continue;
cnt[nt] = cnt[u] + ;
if(cnt[nt] >= n) return ;
f[nt] = f[u] + E[i].val;
if(!vis[nt]) {vis[nt] = ; q.push(nt);}
}
}
return ;
} int check(double x) {
memset(head2, , sizeof(head2));
memset(cnt, , sizeof(cnt));
rep(i, , n) f[i] = inf;
tot2 = ;
rep(i, , tot) {
int u = e[i].fr, v = e[i].to;
double val = x * e[i].val - a[u];
add2(u, v, val);
}
return spfa();
} int main()
{
n = rd; m = rd;
rep(i, , n) a[i] = rd;
rep(i, , m) {
int u = rd, v = rd, val = rd;
add(u, v, val);
}
double l = , r = , mid, ans = ;
while(l + eps < r) {
mid = (l + r) / ;
if(check(mid)) ans = mid, l = mid;
else r = mid;
}
printf("%.2lf\n", ans);
}

POJ 3621Sightseeing Cows 0/1 分数规划的更多相关文章

  1. POJ - 2976 Dropping tests && 0/1 分数规划

    POJ - 2976 Dropping tests 你有 \(n\) 次考试成绩, 定义考试平均成绩为 \[\frac{\sum_{i = 1}^{n} a_{i}}{\sum_{i = 1}^{n} ...

  2. [USACO07DEC]Sightseeing Cows(负环,0/1分数规划)

    [USACO07DEC]Sightseeing Cows Description Farmer John has decided to reward his cows for their hard w ...

  3. POJ 2976 Dropping tests【0/1分数规划模板】

    传送门:http://poj.org/problem?id=2976 题意:给出组和,去掉对数据,使得的总和除以的总和最大. 思路:0/1分数规划 设,则(其中等于0或1) 开始假设使得上式成立,将从 ...

  4. poj 2976 Dropping tests 0/1分数规划

    0/1分数规划问题,用二分解决!! 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> # ...

  5. POJ2976 题解 0/1分数规划入门题 二分

    题目链接:http://poj.org/problem?id=2976 关于 0/1分数规划 参见 这篇博客 实现代码如下: #include <cstdio> #include < ...

  6. bzoj 3597: [Scoi2014]方伯伯运椰子 0/1分数规划

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 144  Solved: 78[Submit][Status ...

  7. LOJ 3089 「BJOI2019」奥术神杖——AC自动机DP+0/1分数规划

    题目:https://loj.ac/problem/3089 没想到把根号之类的求对数变成算数平均值.写了个只能得15分的暴力. #include<cstdio> #include< ...

  8. poj2728 Desert King【最优比率生成树】【Prim】【0/1分数规划】

    含[最小生成树Prim]模板. Prim复杂度为$O(n^2),适用于稠密图,特别是完全图的最小生成树的求解.   Desert King Time Limit: 3000MS   Memory Li ...

  9. [SDOI2017]新生舞会 0/1分数规划

    ---题面--- 题解: 0/1分数规划,,,但是竟然有诡异的精度问题???因为这个被卡了好久 中途还写过一次KM,,,结果陷入死循环,,,我大概是写了一个假KM,,,于是放弃KM,回来调费用流 这个 ...

随机推荐

  1. SAP 费用

    SAP在华真相:天价收费与用户之灾 SAP真的是企业实施ERP系统的最佳选择吗? 画皮SAP-世界管理软件公司的中国真相 你知道SAP吗?哦,知道,满大街都是嘛,S-P-A,SPA.做出上述回答的是一 ...

  2. APP支付-》支付宝RSA2->支付与验签

    第一次配置支付宝,按照官网示例搞了一天,走不通.经过两天的踩坑,百度了大神的代码,支付宝终于可以了. 1:下载这是官网的最新SDK 2:配置SDK,添加命名空间 AopClient.php文件: Si ...

  3. metasploit framework(十五):弱点扫描

    openvas扫描生成NBE格式的日志 改个比较好记的文件名 将日志导入到msf进行后续操作,导入之前查看一下hosts和services 导入nbe格式的文件 查看漏洞弱点 msf直接调用nessu ...

  4. Java读取文件时第一行出现乱码“?”问号

    我们在使用Java在读取文件(txt.dat等)时,如果文件不是utf-8格式的话,读取结果会出现,中文字符变乱码的情况,所以一般在读取时转为UTF-8格式读取. 但这时会出现一种情况,第一次读取第一 ...

  5. 最长公共子序列hdu1503

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1503 题意:给你两个字符串,把这两个字符串合并,使合并之后的字符串最短,并且合并之后的字符之间的相对位 ...

  6. HDU-2612.Find way .(不同起点不同终点的BFS)

    我要被这个好用的memset气死了...... 真香 #include <cstring> #include <string> int main () { ]; memset( ...

  7. 《学习OpenCV(中文版)》

    <模式识别中文版(希)西奥多里蒂斯> <学习OpenCV(中文版)> 矩阵计算 英文版 第四版 Matrix Computations OpenCV 3.x with Pyth ...

  8. MySQL基本SQL语句之数据插入、删除数据和更新数据

    一.INSERT插入数据: 方法一:批量插入 基本语法: INSERT INTO tb_name (col1, col2, ...) VALUES (val1, val2, ...)[,(val1, ...

  9. python——线程相关

    使用python的threading中的Thread 下面是两种基本的实现线程的方式: 第一种方式———— #coding=utf-8 """ thread的第一种声明及 ...

  10. 【Linux 线程】引出线程加锁问题

    1.多线程的问题引入 多线程的最大的特点是资源的共享,但是,当多个线程同时去操作(同时去改变)一个临界资源时,会破坏临界资源.