【洛谷P2504】聪明的猴子 最小瓶颈树
题目大意:给定一张 N 个顶点的完全图,边有边权,求该完全图的一棵最小瓶颈树。
最小瓶颈树:一棵最大边权值在同一张图的所有生成树中最小,即:最大边权值最小的生成树,其值为该树的最大边权的权值。
引理1:最小生成树一定是一棵最小瓶颈树。
证明:若最小生成树不是最小瓶颈树,则意味着存在一条边的权值大于最小瓶颈树的最大边权值,那么将 MST 的该边去掉,则将一棵树变成了不连通的两棵树,再将最小瓶颈树的一条连接这两个联通块的边加入 MST,可以得到一棵权值更小的生成树,与 MST 性质矛盾,证毕。
引理2:最小瓶颈树不一定是最小生成树。
证明:
代码如下
#include <bits/stdc++.h>
using namespace std;
const int maxe=1e6+10;
const int maxv=1010;
inline int read(){
int x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
}
int n,m,tot,d[maxv>>1],f[maxv],sum,path,cnt;
struct node{int x,y;}p[maxv];
struct edge{int from,to,w;}e[maxe];
bool cmp(const edge& x,const edge& y){return x.w<y.w;}
inline int get_dis(int a,int b){
return (p[a].x-p[b].x)*(p[a].x-p[b].x)+(p[a].y-p[b].y)*(p[a].y-p[b].y);
}
void read_and_parse(){
m=read();
for(int i=1;i<=m;i++)d[i]=read();
sum=n=read();
for(int i=1;i<=n;i++)p[i].x=read(),p[i].y=read();
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
e[++tot]=edge{i,j,get_dis(i,j)};
}
int find(int x){return x==f[x]?f[x]:f[x]=find(f[x]);}
int kruskal(){
int src;
for(int i=1;i<=n;i++)f[i]=i;
sort(e+1,e+tot+1,cmp);
for(int i=1;i<=tot&&sum>1;i++){
int x=find(e[i].from),y=find(e[i].to);
if(x==y)continue;
f[x]=y,--sum,src=e[i].w;
}
return src;
}
void solve(){
path=kruskal();
for(int i=1;i<=m;i++)if(d[i]*d[i]>=path)++cnt;
printf("%d\n",cnt);
}
int main(){
read_and_parse();
solve();
return 0;
}
【洛谷P2504】聪明的猴子 最小瓶颈树的更多相关文章
- [洛谷]P3729 曼哈顿计划EX(最小割树/等价流树)
题目大意:给出一张n个点m条边的无向图,每个点有点权,q次询问,每次给出k,要求选出若干个点点权之和不小于k,求一个最大的值x,使得选出的点中任意两点之间至少有x条互不相交的链.(n<=550, ...
- 洛谷 P2504 [HAOI2006]聪明的猴子
洛谷 P2504 [HAOI2006]聪明的猴子 题目描述 在一个热带雨林中生存着一群猴子,它们以树上的果子为生.昨天下了一场大雨,现在雨过天晴,但整个雨林的地表还是被大水淹没着,部分植物的树冠露在水 ...
- 洛谷P3377 【模板】左偏树(可并堆) 题解
作者:zifeiy 标签:左偏树 这篇随笔需要你在之前掌握 堆 和 二叉树 的相关知识点. 堆支持在 \(O(\log n)\) 的时间内进行插入元素.查询最值和删除最值的操作.在这里,如果最值是最小 ...
- 【UVA 10816】 Travel in Desert (最小瓶颈树+最短路)
[题意] 有n个绿洲, m条道路,每条路上有一个温度,和一个路程长度,从绿洲s到绿洲t,求一条道路的最高温度尽量小, 如果有多条, 选一条总路程最短的. InputInput consists of ...
- 洛谷 P3377 【模板】左偏树(可并堆)
洛谷 P3377 [模板]左偏树(可并堆) 题目描述 如题,一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 x y 将第x个数和第y个数所在的小根堆合并(若第x或 ...
- 洛谷—— P2504 [HAOI2006]聪明的猴子
P2504 [HAOI2006]聪明的猴子 题目描述 在一个热带雨林中生存着一群猴子,它们以树上的果子为生.昨天下了一场大雨,现在雨过天晴,但整个雨林的地表还是被大水淹没着,部分植物的树冠露在水面上. ...
- 洛谷——P2504 [HAOI2006]聪明的猴子
P2504 [HAOI2006]聪明的猴子 题目描述 在一个热带雨林中生存着一群猴子,它们以树上的果子为生.昨天下了一场大雨,现在雨过天晴,但整个雨林的地表还是被大水淹没着,部分植物的树冠露在水面上. ...
- 最小表示法模板(洛谷P1368 工艺)(最小表示法)
洛谷题目传送门 最小表示是指一个字符串通过循环位移变换(第一个移到最后一个)所能得到的字典序最小的字符串. 因为是环状的,所以肯定要先转化为序列,把原串倍长. 设决策点为一个表示法的开头.比较两个决策 ...
- 洛谷 P3187 BZOJ 1185 [HNOI2007]最小矩形覆盖 (旋转卡壳)
题目链接: 洛谷 P3187 [HNOI2007]最小矩形覆盖 BZOJ 1185: [HNOI2007]最小矩形覆盖 Description 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形, ...
随机推荐
- 20155304《网络对抗》Exp7 网络欺诈技术防范
20155304<网络对抗>Exp7 网络欺诈技术防范 实践内容 本实践的目标理解常用网络欺诈背后的原理,以提高防范意识,并提出具体防范方法.具体实践有 (1)简单应用SET工具建立冒名网 ...
- 20155339平措卓玛 Exp2 后门原理与实践
20155339平措卓玛Exp2 后门原理与实践 基础问题 (1)例举你能想到的一个后门进入到你系统中的可能方式? 答:下载并安装某个程序,这个程序可以正常的并且完整的为我们提供服务,但是在开发改程序 ...
- Ueditor使用笔记
富文本编辑器在javaweb项目中还是比较常见的,如:ckeditor.kindeditor.ueditor等.今天主要叙述的对象为ueditor,它属于百度的.闲话不多说,下面开始介 ...
- Kubernetes学习之路(二十二)之Pod资源调度
目录 Pod资源调度 1.常用的预选策略 2.优选函数 3.节点亲和调度 3.1.节点硬亲和性 3.2.节点软亲和性 4.Pod资源亲和调度 4.1.Pod硬亲和度 4.2.Pod软亲和度 4.3.P ...
- Django高并发负载均衡
1 什么是负载均衡? 当一台服务器的性能达到极限时,我们可以使用服务器集群来提高网站的整体性能.那么,在服务器集群中,需要有一台服务器充当调度者的角色,用户的所有请求都会首先由它接收,调度者再根据每台 ...
- CSS快速入门-组合选择器
<div class="gradefather"> hello1 <div class="father">hello2 <p cl ...
- Docker部署Zookeeper容器
获取zookeeper镜像 docker pull zookeeper 创建zookeeper容器 docker run --name="zookeeper" -p 2181:21 ...
- Linux 第五周 实验: 分析system_call中断处理过程
姬梦馨 原创博客 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 使用gdb跟踪分析一个系统调用内核函数 ...
- 课堂讨论 alpha版最后总结
议时间:组队开发最后总结会议 星期一 下午4:30-5:30 会议地点:学院楼自习室 到会人员:唐野野 胡潘华 王永伟 魏孟 会议概要: 1.展示最后开发成果: 2.交流开发过程心得体会: 会 ...
- week8:个人博客作业
团队作业(5) 要求 在PM 带领下, 每个团队深入分析下面行业的App, 找到行业的Top 5 (从下面的三个备选中,任选一个行业即可) 英语学习/词典App 笔记App 旅游行业的手机App 选择 ...