RT,这太谔谔了,我不承认这是模拟赛

但是虽然是搬了三道题,题目本身也还能看,就这么着吧

(怎么机房里就我一道原题都没做过啊

T1 CF24D Broken Robot

比较简单地列出式子之后,我们发现可以自底向上每行做高斯消元求从每个格子出发的期望步数,复杂度$O(n^4)$(边界是最底下一行都是零)

然后我们发现高斯消元的时候每一行对应的方程就那几个地方有数,于是脚动高斯消元一下就可以$O(n^2)$了

 #pragma GCC optimize(2)
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=,mod=;
int n,m,x,y,inv2,inv3,inv4,in2v,in3v,in4v,in23v,in34v;
int dp[N][N],equ[N][N];
template<class T,class TT> void Mis(TT &x,T y){x-=y; if(x<) x+=mod;}
template<class T,class TT> int Mi(TT x,T y){x-=y; if(x<) x+=mod; return x;}
void exGCD(int a,int b,int &x,int &y)
{
if(!b) x=,y=;
else exGCD(b,a%b,y,x),y-=a/b*x;
}
int Inv(int x)
{
int xx,yy;
exGCD(x,mod,xx,yy);
return (xx%mod+mod)%mod;
}
void Pre()
{
inv2=Inv(),inv3=Inv(),inv4=Inv();
in2v=mod-inv2,in3v=mod-inv3,in4v=mod-inv4;
in23v=2ll*in3v%mod,in34v=3ll*in4v%mod;
}
void Init(int a)
{
if(m==)
{
equ[][]=in2v;
equ[][m+]=Mi(1ll*dp[a+][]*in2v%mod,);
}
else
{
equ[][]=equ[m][m]=in23v;
equ[][]=equ[m][m-]=inv3;
equ[][m+]=Mi(1ll*dp[a+][]*in3v%mod,);
equ[m][m+]=Mi(1ll*dp[a+][m]*in3v%mod,);
for(int i=;i<m;i++)
{
equ[i][i-]=equ[i][i+]=inv4,equ[i][i]=in34v;
equ[i][m+]=Mi(1ll*dp[a+][i]*in4v%mod,);
}
}
}
void Guass(int a)
{
register int i;
for(i=;i<m;i++)
{
int calc=1ll*equ[i+][i]*Inv(equ[i][i])%mod;
Mis(equ[i+][i],1ll*calc*equ[i][i]%mod);
Mis(equ[i+][i+],1ll*calc*equ[i][i+]%mod);
Mis(equ[i+][m+],1ll*calc*equ[i][m+]%mod);
}
dp[a][m]=1ll*equ[m][m+]*Inv(equ[m][m])%mod;
for(i=m-;i;i--)
dp[a][i]=1ll*Mi(equ[i][m+],1ll*dp[a][i+]*equ[i][i+]%mod)*Inv(equ[i][i])%mod;
}
int main()
{
register int i;
scanf("%d%d%d%d",&n,&m,&x,&y),Pre();
for(i=n-;i>=x;i--) Init(i),Guass(i);
printf("%d",dp[x][y]);
return ;
}

T2 CEOI 2017 Building Bridges

花式优化DP

沙茶博主->CDQ+sort->$O(n\log^2 n)$

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define lli long long
using namespace std;
const int N=;
int n,top,pos[N],stk[N];
lli h[N],s[N],x[N],y[N],dp[N];
void Maxi(lli &x,lli y){if(x<y) x=y;}
void Mini(lli &x,lli y){if(x>y) x=y;}
bool cmp(int a,int b)
{
return x[a]==x[b]?y[a]<y[b]:x[a]<x[b];
}
bool Slope(int a,int b,int c)
{
return (y[a]-y[c])*(x[b]-x[c])>=(y[b]-y[c])*(x[a]-x[c]);
}
lli Calc(int a,int b)
{
return -*h[b]*x[a]+y[a];
}
void CDQ(int l,int r)
{
if(l==r)
x[l]=h[l],y[l]=dp[l]-s[l]+h[l]*h[l];
else
{
int mid=(l+r)>>;
CDQ(l,mid);
sort(pos+l,pos++mid,cmp),top=;
for(int i=l;i<=mid;i++)
{
while(top>&&Slope(pos[i],stk[top-],stk[top])) top--;
stk[++top]=pos[i];
}
for(int i=mid+;i<=r;i++)
{
int ll=,rr=top-,re=top;
while(ll<=rr)
{
int midd=(ll+rr)>>;
if(Calc(stk[midd],i)<Calc(stk[midd+],i)) re=midd,rr=midd-;
else ll=midd+;
}
Mini(dp[i],Calc(stk[re],i)+s[i-]+h[i]*h[i]);
}
CDQ(mid+,r);
}
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++) scanf("%lld",&h[i]);
for(int i=;i<=n;i++) scanf("%lld",&s[i]);
for(int i=;i<=n;i++) pos[i]=i,s[i]+=s[i-];
memset(dp,0x3f,sizeof dp),dp[]=;
CDQ(,n),printf("%lld",dp[n]);
return ;
}

T3 UOJ 310 黎明前的巧克力

拿全集作个差就是一道题了

我们要选出异或和相同的集合,等价于选出一个异或和为零的集合,然后拆成两个集合。所以可以设计一个朴素的DP:$dp[i][j]$表示考虑前$i$个数选出异或和为$j$的方案数。进一步我们发现这是在FWT,零的贡献是1,当前卷的数对一些位置贡献2,对一些位置贡献-2。又因为FWT是线性变换,所以最终卷出来是一坨1-2=-1和1+2=3。整体做一次FWT之后,解方程得到每个位置具体的-1和3的个数,然后IFWT回来

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define lli long long
using namespace std;
const int N=,mod=;
int n,m,nm,rd,inv2,inv4;
int bkt[N],res[N],fac[N],inv[N];
void Maxi(int &x,int y){if(x<y) x=y;}
int Qpow(int x,int k)
{
if(k==) return x;
int tmp=Qpow(x,k/);
return k%?1ll*tmp*tmp%mod*x%mod:1ll*tmp*tmp%mod;
}
int C(int a,int b)
{
return 1ll*fac[a]*inv[b]%mod*inv[a-b]%mod;
}
void Pre()
{
int lim=1e6;
fac[]=inv[]=,nm=,inv2=Qpow(,mod-),inv4=Qpow(,mod-);
for(int i=;i<=lim;i++) fac[i]=1ll*fac[i-]*i%mod;
inv[lim]=pow(fac[lim],mod-);
for(int i=lim-;i;i--) inv[i]=1ll*inv[i+]*(i+)%mod;
}
void Trans(int *arr,int tot,int typ)
{
register int i,j,k;
for(i=;i<=tot;i<<=)
{
int len=i>>,tmp;
for(j=;j<tot;j+=i)
for(k=j;k<j+len;k++)
tmp=arr[k+len],arr[k+len]=(arr[k]-tmp+mod)%mod,arr[k]=(arr[k]+tmp)%mod;
if(typ==-)
for(j=;j<tot;j++)
arr[j]=1ll*arr[j]*inv2%mod;
}
}
int main()
{
scanf("%d",&n),Pre();
for(int i=;i<=n;i++)
{
scanf("%d",&rd);
bkt[]++,bkt[rd]+=,Maxi(m,rd);
}
while(nm<=m) nm<<=;
Trans(bkt,nm,);
for(int i=;i<nm;i++)
{
int tmp=1ll*(n+bkt[i])*inv4%mod;
res[i]=((tmp+n)%mod)%?mod-Qpow(,tmp):Qpow(,tmp);
}
Trans(res,nm,-);
printf("%lld",1ll*(Qpow(,n)-res[]+mod)*Qpow(,mod-)%mod);
return ;
}

2019.3.16 noiac的原题模拟赛的更多相关文章

  1. NOIp2017真题模拟赛 By cellur925

    果然我还是最菜的==不接受反驳 (先考了day2喵喵喵) Day2 T1:奶酪 期望得分:100分 实际得分:100分 考察:并查集 思路:这题其实之前做过了==.思路还是比较清晰的,读入时预处理出可 ...

  2. NOIp 2015真题模拟赛 By cellur925

    果然我还是最菜的==不接受反驳== Day1 T1:神奇的幻方 思路:直接模拟即可,由于当前放法只与上一放法有关系,用两个变量记录一下即可.10分钟内切掉== 预计得分:100分 实际得分:100分 ...

  3. 大家AK杯 灰天飞雁NOIP模拟赛题解/数据/标程

    数据 http://files.cnblogs.com/htfy/data.zip 简要题解 桌球碰撞 纯模拟,注意一开始就在袋口和v=0的情况.v和坐标可以是小数.为保险起见最好用extended/ ...

  4. 2014-11-3 NOIP模拟赛2

    NOIP 2014 水题模拟赛 (请选手务必仔细阅读本页内容) 一.题目概况 中文题目名称 数列 刷漆 排队 英文题目与子目录名 seq paint layout 可执行文件名 seq paint l ...

  5. 更新 | 2019年9月计算机二级office模拟题库

    随着2019年上半年计算机二级考试的完美落幕,紧接着的便是9月份的考试了. 到目前为止,下半年9月份计算机二级考试报名开通时间在6月前后,现在也基本结束. 2019年9月(56次)全国计算机等级考试( ...

  6. [原题复现]ByteCTF 2019 –WEB- Boring-Code[无参数rce、绕过filter_var(),等]

    简介  原题复现:  考察知识点:无参数命令执行.绕过filter_var(), preg_match()  线上平台:https://buuoj.cn(北京联合大学公开的CTF平台) 榆林学院内可使 ...

  7. [原题复现][CISCN 2019 初赛]WEB-Love Math(无参数RCE)[未完结]

    简介  原题复现:  考察知识点:无参数命令执行  线上平台:https://buuoj.cn(北京联合大学公开的CTF平台) 榆林学院内可使用信安协会内部的CTF训练平台找到此题 源码审计 代码 1 ...

  8. [原题复现+审计][RoarCTF 2019]Easy Calc(http协议走私、php字符串解析漏洞)

    简介  原题复现:  考察知识点:http协议走私.php字符串解析漏洞  线上平台:https://buuoj.cn(北京联合大学公开的CTF平台) 榆林学院内可使用信安协会内部的CTF训练平台找到 ...

  9. [原题复现][极客大挑战 2019]BuyFlag

    简介  原题复现:[极客大挑战 2019]BuyFlag  考察知识点:php函数特性(is_numeric().strcmp函数())  线上平台:https://buuoj.cn(北京联合大学公开 ...

随机推荐

  1. 20155321 《网络攻防》 Exp8 Web基础

    20155321 <网络攻防> Exp8 Web基础 基础问题回答 什么是表单? 表单是主要负责数据采集功能.主要是以下三个部分构成: 表单标签:包含处理表单数据所用的程序的URL以及数据 ...

  2. # 20155337《网络对抗》Exp9 Web安全基础

    20155337<网络对抗>Exp9 Web安全基础 实践目标 一.基础问题回答 1.实验后回答问题 SQL注入攻击原理,如何防御 SQL注入攻击的本质是利用SQL语法,针对应用程序开发过 ...

  3. Wpf(Storyboard)动画简单实例

    原文:Wpf(Storyboard)动画简单实例 动画的三种变换方式 RotateTransform:旋转变换变化值:CenterX围绕转的圆心横坐标 CenterY纵坐标 Angle旋转角度(角度正 ...

  4. linux gz 解压缩

    Linux压缩保留源文件的方法:gzip –c filename > filename.gzLinux解压缩保留源文件的方法:gunzip –c filename.gz > filenam ...

  5. python 回溯法 子集树模板 系列 —— 19、野人与传教士问题

    问题 在河的左岸有N个传教士.N个野人和一条船,传教士们想用这条船把所有人都运过河去,但有以下条件限制: (1)修道士和野人都会划船,但船每次最多只能运M个人: (2)在任何岸边以及船上,野人数目都不 ...

  6. Redis学习之路(四)之Redis集群

    [toc] #Redis集群 1.Redis Cluster简介 Redis Cluster为Redis官方提供的一种分布式集群解决方案.它支持在线节点增加和减少. 集群中的节点角色可能是主,也可能是 ...

  7. OLEDB数据源和目标组件

    在SSIS工程的开发过程中,OLEDB 数据源和目标组件是最常用的数据流组件.从功能上讲,OLEDB 数据源组件用于从OLEDB 提供者(Provider)中获取数据,传递给下游组件,OLEDB提供者 ...

  8. 【ORACLE】oracle11g dg搭建

    --------------------------------每个节点和DG------------------------------------------------------------- ...

  9. stl源码剖析 详细学习笔记deque(2)

    //---------------------------15/3/13---------------------------- self&operator++() { ++cur; if(c ...

  10. 20135202闫佳歆--week4 两种方式使用同一个系统调用--实验及总结

    实验四 使用库函数API和C代码中嵌入汇编代码两种方式使用同一个系统调用 在这里我选择的是第20号系统调用,getpid. 1.使用库函数API: 代码如下: /* getpid.c */ #incl ...