【BZOJ1304】[CQOI2009]叶子的染色(动态规划)

题面

BZOJ

洛谷

题解

很简单。

设\(f[i][0/1/2]\)表示以\(i\)为根的子树中,还有颜色为\(0/1/2\)(\(2\)就是没有染色)的叶子节点的路径上没有任何一个染色的点。随便转移一下就好了。

#include<iostream>
#include<cstdio>
using namespace std;
#define MAX 10010
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int n,m,a[MAX];
struct Line{int v,next;}e[MAX<<1];
int h[MAX],cnt=1;
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int f[MAX][3];
void dfs(int u,int ff)
{
if(u<=m)f[u][2]=1,f[u][a[u]^1]=1e9;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(v==ff)continue;
dfs(v,u);
f[u][2]+=f[v][2];
f[u][1]+=min(f[v][1],f[v][2]);
f[u][0]+=min(f[v][0],f[v][2]);
}
f[u][2]=min(f[u][2],min(f[u][1],f[u][0])+1);
}
int main()
{
n=read();m=read();
for(int i=1;i<=m;++i)a[i]=read();
for(int i=1;i<n;++i)
{
int u=read(),v=read();
Add(u,v);Add(v,u);
}
dfs(n,0);
printf("%d\n",f[n][2]);
return 0;
}

【BZOJ1304】[CQOI2009]叶子的染色(动态规划)的更多相关文章

  1. BZOJ1304 CQOI2009 叶子的染色 【树形DP】

    BZOJ1304 CQOI2009 叶子的染色 Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方 ...

  2. BZOJ1304 CQOI2009叶子的染色(树形dp)

    令f[i]表示i子树内最少染色次数,加上012状态分别表示该子树内叶节点已均被满足.存在黑色叶节点未被满足.存在白色叶节点未被满足,考虑i节点涂色情况即可转移.事实上贪心也可以. #include&l ...

  3. BZOJ1304: [CQOI2009]叶子的染色 树形dp

    Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的简单路径上都至少包含 ...

  4. 【树形dp】bzoj1304: [CQOI2009]叶子的染色

    又是一道优美的dp Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到每个叶子的 ...

  5. BZOJ1304: [CQOI2009]叶子的染色

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1304 树形dp. 可以发现其实根选在哪里都是没有问题的. f[u][0],f[u][1],f[ ...

  6. BZOJ 1304: [CQOI2009]叶子的染色

    1304: [CQOI2009]叶子的染色 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 566  Solved: 358[Submit][Statu ...

  7. 洛谷 P3155 [CQOI2009]叶子的染色 解题报告

    P3155 [CQOI2009]叶子的染色 题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到 ...

  8. P3155 [CQOI2009]叶子的染色

    P3155 [CQOI2009]叶子的染色 题目描述 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白色.你的着色方案应该保证根结点到 ...

  9. BZOJ_1304_[CQOI2009]叶子的染色_树形DP

    BZOJ_1304_[CQOI2009]叶子的染色_树形DP Description 给一棵m个结点的无根树,你可以选择一个度数大于1的结点作为根,然后给一些结点(根.内部结点和叶子均可)着以黑色或白 ...

随机推荐

  1. 【HNOI2016】矿区

    题面 题解 知识引入 1. 平面图 一个图\(G=(V,E)\),若能将其画在平面上,且任意两条边的交点只能是\(G\)的顶点,则称\(G\)可嵌入平面,或称\(G\)是可平面的. 可平面图在平面上的 ...

  2. Linux下设置和查看环境变量

    Linux的变量种类 按变量的生存周期来划分,Linux变量可分为两类: 1 永久的:需要修改配置文件,变量永久生效. 2 临时的:使用export命令声明即可,变量在关闭shell时失效. 设置变量 ...

  3. FFMPEG的基础使用

    由于最近要将yuv视频下采样,于是使用ffmpeg快速将yuv视频下降分辨率.在此记录ffmpeg的基础使用方法和所遇到的问题: 下载,可到官网下载:https://www.ffmpeg.org/ . ...

  4. 机器学习初入门04 – Seaborn(持续更新)

    Seaborn库可以说是在matplotlib库上的一个封装,它给我们提供了非常丰富的模板 一.整体布局风格设置 import seaborn as sns import numpy as np im ...

  5. beef局域网内模拟攻击

    0x0环境 主机A win10:10.51.20.60(wifi) 主机A中的虚拟机kali(攻击者):192.168.110.129(NAT) 主机A中的虚拟机win2003(受害者):192.16 ...

  6. 5分钟让你明白HTTP协议

    一.HTTP简介 1.http协议介绍 HTTP协议(HyperText Transfer Protocol,超文本传输协议)是因特网上应用最为广泛的一种网络传输协议,所有的WWW文件都必须遵守这个标 ...

  7. [!] CocoaPods could not find compatible versions for pod "Folly"问题举例

    $ pod install 后出现下面错误: [!] CocoaPods could not find compatible versions for pod "Folly": I ...

  8. PAT甲题题解-1064. Complete Binary Search Tree (30)-中序和层次遍历,水

    由于是满二叉树,用数组既可以表示父节点是i,则左孩子是2*i,右孩子是2*i+1另外根据二分搜索树的性质,中序遍历恰好是从小到大排序因此先中序遍历填充节点对应的值,然后再层次遍历输出即可. 又是一道遍 ...

  9. Game over 作业

    终于有一篇不拼代码拼码字的作业了,哈哈哈..... 从寒假到这次结束,经历的博客及编码作业的过程 前面七次作业做个分类: 通往博客园和C++的第一步. 知识点:让我们对C++做一个预习,在学C++前有 ...

  10. 第四,五周——Java编写的电梯模拟系统(结对作业)

    作业代码:https://coding.net/u/liyi175/p/Dianti/git 伙伴成员:石开洪 http://www.cnblogs.com/shikaihong/(博客) 这次的作业 ...