本题大意:给定多个矩形的长和宽,让你判断最多能有几个矩形可以嵌套在一起,嵌套的条件为长和宽分别都小于另一个矩形的长和宽。

  本题思路:其实这道题和之前做过的一道模版题数字三角形很相似,大体思路都一致,这道题是很经典的DAG上的最长路问题,用dp[ i ]表示以i为出发点的最长路的长度,因为每一步都只能走向他的相邻点,则

d[ i ]  = max(d[ j ] + 1)这里 j 是任意一个面积比 i 小的举行的编号。

  下面的代码中附带了最小字典序最长路打印的问题,我们找到第一个路径最长的 i,往后每次都找第一个符合条件的 i 输出即可。

  参考代码:

 #include <iostream>
#include <cstring>
using namespace std; typedef pair<int ,int > P;
int n, m;
const int maxn = + , Max = + ;
int G[maxn][maxn], cnt, b;
int d[maxn];
P rectangle[Max]; bool check(int i, int j) {
return (rectangle[i].first > rectangle[j].first && rectangle[i].second > rectangle[j].second) ||
(rectangle[i].first > rectangle[j].second && rectangle[i].second > rectangle[j].first);
} int dp(int i) {
int &ans = d[i];
if(ans != -) return ans;
ans = ;
for(int j = ; j < maxn; j ++)
if(G[i][j] == ) ans = max(ans, dp(j) + );
cnt = max(cnt, ans);
return ans;
} void print_ans(int i) {
cout << i << '\t';
for(int j = ; j < maxn; j ++)
if(G[i][j] == && d[i] == d[j] + ) {
print_ans(j);
break;
}
} int main () {
int n;
cin >> n;
while(n --) {
cnt = ;
memset(d, -, sizeof d);
memset(G, -, sizeof G);
cin >> m;
for(int i = ; i < m; i ++)
cin >> rectangle[i].first >> rectangle[i].second;
for(int i = ; i < m; i ++)
for(int j = ; j < m; j ++)
if(check(i, j))
G[i][j] = ;
for(int i = ; i < m; i ++)
dp(i);
cout << cnt << endl;
for(int i = ; i < maxn; i ++) if(d[i] == cnt) b = i;
// print_ans(b);
}
return ;
}

NYOJ_矩形嵌套(DAG上的最长路 + 经典dp)的更多相关文章

  1. POJ 1949 Chores(DAG上的最长路 , DP)

    题意: 给定n项任务, 每项任务的完成用时t和完成每项任务前需要的k项任务, 求把所有任务完成的最短时间,有当前时间多项任务都可完成, 那么可以同时进行. 分析: 这题关键就是每项任务都会有先决条件, ...

  2. UVa 10285 最长的滑雪路径(DAG上的最长路)

    https://vjudge.net/problem/UVA-10285 题意: 在一个R*C的整数矩阵上找一条高度严格递减的最长路.起点任意,但每次只能沿着上下左右4个方向之一走一格,并且不能走出矩 ...

  3. Vulnerable Kerbals CodeForces - 772C【拓展欧几里得建图+DAG上求最长路】

    根据拓展欧几里得对于同余方程 $ax+by=c$ ,有解的条件是 $(a,b)|c$. 那么对于构造的序列的数,前一个数 $a$  和后一个数 $b$ ,应该满足 $a*x=b(mod m)$ 即 $ ...

  4. HDU 3249 Test for job (有向无环图上的最长路,DP)

     解题思路: 求有向无环图上的最长路.简单的动态规划 #include <iostream> #include <cstring> #include <cstdlib ...

  5. NYOJ 16 矩形嵌套 (DAG上的DP)

    矩形嵌套 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描写叙述 有n个矩形,每个矩形能够用a,b来描写叙述.表示长和宽.矩形X(a,b)能够嵌套在矩形Y(c,d)中当且仅当 ...

  6. uva103(最长递增序列,dag上的最长路)

    题目的意思是给定k个盒子,每个盒子的维度有n dimension 问最多有多少个盒子能够依次嵌套 但是这个嵌套的规则有点特殊,两个盒子,D = (d1,d2,...dn) ,E = (e1,e2... ...

  7. HDU 4109 Instrction Arrangement(DAG上的最长路)

    把点编号改成1-N,加一点0,从0点到之前任意入度为0的点之间连一条边权为0的边,求0点到所有点的最长路. SPFA模板留底用 #include <cstdio> #include < ...

  8. hdu 1224(动态规划 DAG上的最长路)

    Free DIY Tour Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Tot ...

  9. zoj 3795 Grouping tarjan缩点 + DGA上的最长路

    Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu Submit Status Practic ...

随机推荐

  1. nginx 服务器常见配置以及负载均衡

    # 配置启动用户,用户权限不够会出现访问 403 的情况 user root; # 启动多少个工作进程 worker_processes 1; # 错误日志文件进程文件的保存地址 error_log ...

  2. HTML5 Canvas 小例子 伸缩旋转方块

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  3. react-native 集成react-native-image-crop-picker,使用相册相机功能

    先是安装 和链接 npm i react-native-image-crop-picker --save react-native link react-native-image-crop-picke ...

  4. 获取数据库表中自增长最新的id

    mybatis <insert id="InsertCourse"> insert into training_course(type_id,course_title, ...

  5. Delphi 文件目录相关的操作函数

    需要User   SysUtils 取文件名 ExtractFileName(FileName); 取文件扩展名: ExtractFileExt(filename); 取文件名,不带扩展名: 方法一: ...

  6. Zookeeper 3、Zookeeper工作原理(转)

    1.Zookeeper的角色 » 领导者(leader),负责进行投票的发起和决议,更新系统状态 » 学习者(learner),包括跟随者(follower)和观察者(observer),follow ...

  7. Linux后门入侵检测工具

    一.rootkit简介 rootkit是Linux平台下最常见的一种木马后门工具,它主要通过替换系统文件来达到入侵和和隐蔽的目的,这种木马比普通木马后门更加危险和隐蔽,普通的检测工具和检查手段很难发现 ...

  8. bug提单规范

    一.提单模板 标题:[项目组][模块][子模块][发生原因]问题简要描述描述:[预置条件] 有就写清楚,没有就写无[操作步骤]1.XXXXX2.XXXXXX3.XXXXX[实际结果] XXXXX[预期 ...

  9. C#调用C++

    c++ extern "C" __declspec(dllexport) char* WINAPI base64_decode( char *data,char base[]) { ...

  10. [Shell]Shell脚本的执行方式

    ---------------------------------------------------------------------------------------------------- ...