【nlp】中文分词基础原则及正向最大匹配法、逆向最大匹配法、双向最大匹配法的分析
分词算法设计中的几个基本原则:
1、颗粒度越大越好:用于进行语义分析的文本分词,要求分词结果的颗粒度越大,即单词的字数越多,所能表示的含义越确切,如:“公安局长”可以分为“公安 局长”、“公安局 长”、“公安局长”都算对,但是要用于语义分析,则“公安局长”的分词结果最好(当然前提是所使用的词典中有这个词)
2、切分结果中非词典词越少越好,单字字典词数越少越好,这里的“非词典词”就是不包含在词典中的单字,而“单字字典词”指的是可以独立运用的单字,如“的”、“了”、“和”、“你”、“我”、“他”。例如:“技术和服务”,可以分为“技术 和服 务”以及“技术 和 服务”,但“务”字无法独立成词(即词典中没有),但“和”字可以单独成词(词典中要包含),因此“技术 和服 务”有1个非词典词,而“技术 和 服务”有0个非词典词,因此选用后者。
3、总体词数越少越好,在相同字数的情况下,总词数越少,说明语义单元越少,那么相对的单个语义单元的权重会越大,因此准确性会越高。
下面详细说说正向最大匹配法、逆向最大匹配法和双向最大匹配法具体是如何进行的:
先说说什么是最大匹配法:最大匹配是指以词典为依据,取词典中最长单词为第一个次取字数量的扫描串,在词典中进行扫描(为提升扫描效率,还可以跟据字数多少设计多个字典,然后根据字数分别从不同字典中进行扫描)。例如:词典中最长词为“中华人民共和国”共7个汉字,则最大匹配起始字数为7个汉字。然后逐字递减,在对应的词典中进行查找。
下面以“我们在野生动物园玩”详细说明一下这几种匹配方法:
1、正向最大匹配法:
正向即从前往后取词,从7->1,每次减一个字,直到词典命中或剩下1个单字。
第1次:“我们在野生动物”,扫描7字词典,无
第2次:“我们在野生动”,扫描6字词典,无
。。。。
第6次:“我们”,扫描2字词典,有
扫描中止,输出第1个词为“我们”,去除第1个词后开始第2轮扫描,即:
第2轮扫描:
第1次:“在野生动物园玩”,扫描7字词典,无
第2次:“在野生动物园”,扫描6字词典,无
。。。。
第6次:“在野”,扫描2字词典,有
扫描中止,输出第2个词为“在野”,去除第2个词后开始第3轮扫描,即:
第3轮扫描:
第1次:“生动物园玩”,扫描5字词典,无
第2次:“生动物园”,扫描4字词典,无
第3次:“生动物”,扫描3字词典,无
第4次:“生动”,扫描2字词典,有
扫描中止,输出第3个词为“生动”,第4轮扫描,即:
第4轮扫描:
第1次:“物园玩”,扫描3字词典,无
第2次:“物园”,扫描2字词典,无
第3次:“物”,扫描1字词典,无
扫描中止,输出第4个词为“物”,非字典词数加1,开始第5轮扫描,即:
第5轮扫描:
第1次:“园玩”,扫描2字词典,无
第2次:“园”,扫描1字词典,有
扫描中止,输出第5个词为“园”,单字字典词数加1,开始第6轮扫描,即:
第6轮扫描:
第1次:“玩”,扫描1字字典词,有
扫描中止,输出第6个词为“玩”,单字字典词数加1,整体扫描结束。
正向最大匹配法,最终切分结果为:“我们/在野/生动/物/园/玩”,其中,单字字典词为2,非词典词为1。
2、逆向最大匹配法:
逆向即从后往前取词,其他逻辑和正向相同。即:
第1轮扫描:“在野生动物园玩”
第1次:“在野生动物园玩”,扫描7字词典,无
第2次:“野生动物园玩”,扫描6字词典,无
。。。。
第7次:“玩”,扫描1字词典,有
扫描中止,输出“玩”,单字字典词加1,开始第2轮扫描
第2轮扫描:“们在野生动物园”
第1次:“们在野生动物园”,扫描7字词典,无
第2次:“在野生动物园”,扫描6字词典,无
第3次:“野生动物园”,扫描5字词典,有
扫描中止,输出“野生动物园”,开始第3轮扫描
第3轮扫描:“我们在”
第1次:“我们在”,扫描3字词典,无
第2次:“们在”,扫描2字词典,无
第3次:“在”,扫描1字词典,有
扫描中止,输出“在”,单字字典词加1,开始第4轮扫描
第4轮扫描:“我们”
第1次:“我们”,扫描2字词典,有
扫描中止,输出“我们”,整体扫描结束。
逆向最大匹配法,最终切分结果为:“我们/在/野生动物园/玩”,其中,单字字典词为2,非词典词为0。
3、双向最大匹配法:
正向最大匹配法和逆向最大匹配法,都有其局限性,我举得例子是正向最大匹配法局限性的例子,逆向也同样存在(如:长春药店,逆向切分为“长/春药店”),因此有人又提出了双向最大匹配法,双向最大匹配法。即,两种算法都切一遍,然后根据大颗粒度词越多越好,非词典词和单字词越少越好的原则,选取其中一种分词结果输出。
如:“我们在野生动物园玩”
正向最大匹配法,最终切分结果为:“我们/在野/生动/物/园/玩”,其中,两字词3个,单字字典词为2,非词典词为1。
逆向最大匹配法,最终切分结果为:“我们/在/野生动物园/玩”,其中,五字词1个,两字词1个,单字字典词为2,非词典词为0。
非字典词:正向(1)>逆向(0)(越少越好)
单字字典词:正向(2)=逆向(2)(越少越好)
总词数:正向(6)>逆向(4)(越少越好)
因此最终输出为逆向结果。
【nlp】中文分词基础原则及正向最大匹配法、逆向最大匹配法、双向最大匹配法的分析的更多相关文章
- NLP & 中文分词
NLP & 中文分词 中文分词 (Word Segmentation, WS) 指的是将汉字序列切分成词序列. 中文自然语言处理系统 https://www.ltp-cloud.com/int ...
- 中文分词算法之最大正向匹配算法(Python版)
最大匹配算法是自然语言处理中的中文匹配算法中最基础的算法,分为正向和逆向,原理都是一样的. 正向最大匹配算法,故名思意,从左向右扫描寻找词的最大匹配. 首先我们可以规定一个词的最大长度,每次扫描的时候 ...
- nlp中文分词(jieba和pyltp)
分词是中文自然语言处理的基础.目前常用的分词算法有 1.张华平博士的NShort中文分词算法. 2.基于条件随机场(CRF)的中文分词算法. 这两种算法的代表工具包分别是jieba分词系统和哈工大的L ...
- NLP+词法系列(一)︱中文分词技术小结、几大分词引擎的介绍与比较
笔者想说:觉得英文与中文分词有很大的区别,毕竟中文的表达方式跟英语有很大区别,而且语言组合形式丰富,如果把国外的内容强行搬过来用,不一样是最好的.所以这边看到有几家大牛都在中文分词以及NLP上越走越远 ...
- NLP舞动之中文分词浅析(一)
一.简介 针对现有中文分词在垂直领域应用时,存在准确率不高的问题,本文对其进行了简要分析,对中文分词面临的分词歧义及未登录词等难点进行了介绍,最后对当前中文分词实现的算法原理(基于词表. ...
- 11大Java开源中文分词器的使用方法和分词效果对比,当前几个主要的Lucene中文分词器的比较
本文的目标有两个: 1.学会使用11大Java开源中文分词器 2.对比分析11大Java开源中文分词器的分词效果 本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那 ...
- 双向最大匹配算法——基于词典规则的中文分词(Java实现)
目录 一.中文分词理论描述 二.算法描述 1.正向最大匹配算法 2.反向最大匹配算法 3.双剑合璧 三.案例描述 四.JAVA实现完整代码 五.组装UI 六.总结 前言 这篇将使用Java实现基于规则 ...
- 中文分词实践(基于R语言)
背景:分析用户在世界杯期间讨论最多的话题. 思路:把用户关于世界杯的帖子拉下来.然后做中文分词+词频统计,最后将统计结果简单做个标签云.效果例如以下: 兴许:中文分词是中文信息处理的基础.分词之后.事 ...
- 11大Java开源中文分词器的使用方法和分词效果对比
本文的目标有两个: 1.学会使用11大Java开源中文分词器 2.对比分析11大Java开源中文分词器的分词效果 本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那 ...
随机推荐
- Linux 删除指定时间的文件
find /root/demo -mmin +10 -type f -name '*.png' -exec rm -rf {} \; find 相关:http://man.linuxde.net/fi ...
- Windows下如何查看某个端口被谁占用
开发时经常遇到端口被占用的情况,这个时候总是很令人抓狂,知道被哪个进程占用还好,结束就是了,要是不知道我们该怎么办呢? 我告诉大家一个方法,^_^. 1. 开始—->运行—->cmd,或者 ...
- numpy笔记
numpy数组切片 import numpy as np arr = np.empty((8, 3))for i in range(8): arr[i] == i arr[1,2] # 选取第1行第2 ...
- 尚硅谷redis学习10-复制
是什么? 能干嘛? 怎么玩? 1) 初始情况 设置slave 日志查看 主机查看 备机日志 复制状态 觉见问题 1 切入点问题?slave1.slave2是从头开始复制还是从切入点开始复制?比如从k4 ...
- Delphi 字符串截取函数
如果要使用LeftStr,RightStr,MidStr必需引用系统单元StrUtils; 声明变量Str:string; Str:=HelloWorld; 1,LeftStr(Str,2)=He;/ ...
- byte类型的127+1=-128?
public class Test2 { public void add(Byte b) { b = b++; } public void test() { Byte a = 127; Byte ...
- ReactiveX 学习笔记(5)合并数据流
Combining Observables 本文的主题为合并 Observable 的操作符. 这里的 Observable 实质上是可观察的数据流. RxJava操作符(四)Combining An ...
- 遍历DOM树,链式操作
如果需要在同一个选取结果上使用多个jQuery方法,可以同时列出这些方法,并用.隔开,如下面的代码. 1 $("#one").hide().delay(500).fadeIn(15 ...
- Ajax与select标签的组合运用
---------------------------------------------------------------------------------------------------- ...
- Jetty-attack-test
import httplib, urllib, ssl, string, sys, getopt from urlparse import urlparse ''' Author: Gotham Di ...