【Codechef FRBSUM】【FJOI2016】【BZOJ4299】【BZOJ 4408】 可持久化线段树
4408: [Fjoi 2016]神秘数
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 475 Solved: 287
[Submit][Status][Discuss]
Description
一个可重复数字集合S的神秘数定义为最小的不能被S的子集的和表示的正整数。例如S={1,1,1,4,13},
1 = 1
2 = 1+1
3 = 1+1+1
4 = 4
5 = 4+1
6 = 4+1+1
7 = 4+1+1+1
8无法表示为集合S的子集的和,故集合S的神秘数为8。
现给定n个正整数a[1]..a[n],m个询问,每次询问给定一个区间[l,r](l<=r),求由a[l],a[l+1],…,a[r]所构成的可重复数字集合的神秘数。
Input
第一行一个整数n,表示数字个数。
第二行n个整数,从1编号。
第三行一个整数m,表示询问个数。
以下m行,每行一对整数l,r,表示一个询问。
Output
对于每个询问,输出一行对应的答案。
Sample Input
1 2 4 9 10
5
1 1
1 2
1 3
1 4
1 5
Sample Output
4
8
8
8
HINT
对于100%的数据点,n,m <= 100000,∑a[i] <= 10^9
Source
Solution
这题的思路还是很妙的。
我们假设前面选的数能取到的最大值为k,即[1,k]中的所有数都能取到,现在加入了一个数x。
若x <= k+1,则能取到的最大值为k+x,神秘数为k+x+1
若x > k+1,则能取到的最大值仍为k,神秘数为k+1
对于一个询问(l,r),设当前神秘数为k,若Σai >= k(ai <= k && i∈[l,r]),则说明k仍能增大,否则,神秘数即为k。
而求前缀和,可以用可持久化线段树来解决。
每次寻找,k至少增加一倍,每次求前缀和是logn,总的时间复杂度是O(Q*log1e92)
Code
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm> using namespace std; #define REP(i, a, b) for (int i = (a), i##_end_ = (b); i <= i##_end_; ++i)
typedef long long LL;
const int maxn = 1e5+;
int n, a[maxn];
struct Node
{
LL sum; int ls, rs;
Node() { sum = ls = rs = ; }
}t[maxn*];
int rt[maxn], t_cnt, mx_a; void pushup(Node &x) { x.sum = t[x.ls].sum+t[x.rs].sum; } void update(int now_rt, int las_rt, int l, int r, int x)
{
if (l == r)
{
t[now_rt].sum = t[las_rt].sum+x;
return ;
}
int mid = (l+r)>>;
if (x <= mid)
{
t[now_rt].rs = t[las_rt].rs, t[now_rt].ls = ++t_cnt;
update(t[now_rt].ls, t[las_rt].ls, l, mid, x);
}
else
{
t[now_rt].ls = t[las_rt].ls, t[now_rt].rs = ++t_cnt;
update(t[now_rt].rs, t[las_rt].rs, mid+, r, x);
}
pushup(t[now_rt]);
} int query(int rt_1, int rt_2, int l, int r, int x)
{
if (l > x) return ;
if (r <= x) return t[rt_2].sum-t[rt_1].sum;
int mid = (l+r)>>;
int ret = query(t[rt_1].ls, t[rt_2].ls, l, mid, x);
if (x > mid) ret += query(t[rt_1].rs, t[rt_2].rs, mid+, r, x);
return ret;
} int calc(int l, int r)
{
int ret = , temp = ;
while ((temp = query(rt[l-], rt[r], , mx_a, ret)) >= ret) ret = temp+;
return ret;
} int main()
{
scanf("%d", &n);
REP(i, , n) scanf("%d", &a[i]), mx_a = max(mx_a, a[i]);
REP(i, , n) update(rt[i] = ++t_cnt, rt[i-], , mx_a, a[i]);
int Q, l, r;
scanf("%d", &Q);
while (Q --)
{
scanf("%d %d", &l, &r);
printf("%d\n", calc(l, r));
}
return ;
}
【Codechef FRBSUM】【FJOI2016】【BZOJ4299】【BZOJ 4408】 可持久化线段树的更多相关文章
- bzoj 3123 可持久化线段树启发式合并
首先没有连边的操作的时候,我们可以用可持久化线段树来维护这棵树的信息,建立权值可持久化线段树,那么每个点继承父节点的线段树,当询问为x,y的时候我们可以询问rot[x]+rot[y]-rot[lca( ...
- bzoj 3207 可持久化线段树
首先因为固定询问长度,所以我们可以将整个长度为n的数列hash成长度为n-k+1的数列,每次询问的序列也hash成一个数,然后询问这个数是不是在某个区间中出现过,这样我们可以根据初始数列的权值建立可持 ...
- bzoj 3524 可持久化线段树
我们可以先离散化,然后建立权值的可持久化线段树,记录每个数出现的次数,对于区间询问直接判断左右儿子的cnt是不是大于(r-k+1)/2,然后递归到最后一层要是还是大于就有,否则不存在. 反思:挺简单一 ...
- bzoj 3207 可持久化线段树+hash
这道题要看出来这个做法还是比较容易说一下细节 1.因为要用hash的区间值域来建树,而hash为了不冲突要开的很大,所以值域就会比较的大,不过这道题好的一点是没有修改,所以直接离散一下就会小很多 2. ...
- BZOJ 2588: Spoj 10628. Count on a tree-可持久化线段树+LCA(点权)(树上的操作) 无语(为什么我的LCA的板子不对)
2588: Spoj 10628. Count on a tree Time Limit: 12 Sec Memory Limit: 128 MBSubmit: 9280 Solved: 2421 ...
- Bzoj 4408: [Fjoi 2016]神秘数 可持久化线段树,神题
4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 177 Solved: 128[Submit][Status ...
- BZOJ 3221: [Codechef FEB13] Obserbing the tree树上询问( 可持久化线段树 + 树链剖分 )
树链剖分+可持久化线段树....这个一眼可以看出来, 因为可持久化所以写了标记永久化(否则就是区间修改的线段树的持久化..不会), 结果就写挂了, T得飞起...和管理员拿数据调后才发现= = 做法: ...
- BZOJ 4408: [Fjoi 2016]神秘数 可持久化线段树
4408: [Fjoi 2016]神秘数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4408 Description 一个可重复数字集 ...
- (bzoj4408)[FJOI2016]神秘数(可持久化线段树)
(bzoj4408)[FJOI2016]神秘数(可持久化线段树) bzoj luogu 对于一个区间的数,排序之后从左到右每一个数扫 如果扫到某个数a时已经证明了前面的数能表示[1,x],那么分情况: ...
随机推荐
- Codeforces 338 D. GCD Table
http://codeforces.com/problemset/problem/338/D 题意: 有一张n*m的表格,其中第i行第j列的数为gcd(i,j) 给出k个数 问在这张表格中是否 有某一 ...
- bzoj千题计划193:bzoj2460: [BeiJing2011]元素
http://www.lydsy.com/JudgeOnline/problem.php?id=2460 按魔力值从小到大排序构造线性基 #include<cstdio> #include ...
- 使用 SP_OAXXX 创建文件夹,注意区别于 xp_cmdshell --mkdir xxx
sp_configure 'show advanced options',1 go reconfigure with override go sp_configure 'Ole Automation ...
- Angular 下的 function
angular.lowercas 将指定的字符串转换为小写的 Usage(使用方法) angular.lowercase(string); Arguments Param Type Details ...
- 【洛谷 P2726】 [SHOI2005]树的双中心(树的重心)
先考虑一个\(O(N^2)\)做法. 设选的两个点为\(x,y\),则一定可以将树分成两个集合\(A,B\),使得\(A\)集合所有点都去\(x\),\(B\)集合所有点都去\(y\),而这两个集合的 ...
- js 判断日期大小、是否在时间范围内等处理
var beginval="2015-09-01";//这个时间可以是日期控件选择的,也可以是其他的任何日期时间 var endval="2015-09-01" ...
- 利用C&C漏洞来查看恶意软件Dridex的操作流程
利用C&C漏洞来查看恶意软件Dridex的操作流程 据了解,安全研究人员已经获取到了银行恶意软件Dridex的C&C的访问权限了.这也就意味着,安全研究人员可以了解到网络犯罪分子到底窃 ...
- Hibernate延迟加载策略
所谓懒加载(lazy)就是延时加载,就是当在真正需要数据的时候,才真正执行数据加载操作 至于为什么要用懒加载呢,就是当我们要访问的数据量过大时,明显用缓存不太合适,因为内存容量有限 ,为了减少并发量, ...
- 如何生成能在没有安装opencv库及vs2010环境的电脑上运行的exe文件
项目基本算法已经完成,甲方需要一个可以运行的demo.目前,程序能在自己的电脑上正常运行.移植到其他win7系统上,运行失败. 寻找各种解决办法,baidu找到两个办法: 1.使用静态链接的方法,这种 ...
- 环境变量GOBIN导致GoClipse运行出现异常
Windows 10家庭中文版,go version go1.11 windows/amd64, Eclipse IDE for C/C++ Developers Photon Release (4. ...