这个题一看就是为后缀家族设计的

我们看到我们要求的这个柿子

\[\sum_{i=1}^n\sum_{j=i+1}^nT_i+T_j-2\times lcp(T_i,T_j)
\]

显然的是前面的那些东西是个定值

就是保证每一个长度都会被其他长度算到,也就是算到\(n-1\)次

于是把前面那些东西拿出来就是

\[\frac{(n+1)(n-1)n}{2}
\]

之后再看后面那些东西

所有后缀的\(lcp\)的长度?

先来考虑一下如何求两个后缀的\(lcp\)

哈希+二分啊\(SA\)啊

对于后缀\(i,j\),他们的\(lcp\)长度就是\(min(heighht[rk[i]+1]...height[rk[j]])\)

于是现在的问题转化为求出\(height\)数组所有子区间的最小值的和

我们可以考虑一个动态往序列末尾加数的过程

也就是我们往末尾加一个数都会和之前所有的数形成一个新的区间

考虑快速算出这些区间的最小值的和

我们可以对每一个数存储一个\(a_i\),表示\(i\)到当前序列末尾的最小值是多少

我们每次加入一个数可以对更新一下所有的\(a_i\),把所有比当前加入的数大的\(a_i\)变成当前数就好了

这不就\(T\)了吗

我们发现我们只需要求出所有\(a_i\)的和,并不需要关心这个\(i\)来自哪里,于是我们可以把相等的\(a_i\)放在一起计算,也就是每次新加入一个数就暴力扫一遍把那些比当前加入数大的合并到一个\(a_i\)里

看起来复杂度并不科学,但是最坏情况下就相当于是一个线段树的复杂度了,\(O(n)\)的,跑的还挺快的

代码

#include<iostream>
#include<cstring>
#include<cstdio>
#define re register
#define maxn 500005
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define pt putchar(1)
inline int read()
{
char c=getchar();int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
int n,m,top;
LL ans=0,sum=0;
char S[maxn];
int tax[maxn],sa[maxn],rk[maxn],tp[maxn],height[maxn];
int L[maxn],R[maxn],st[maxn];
int a[maxn],cnt[maxn];
LL pre[maxn];
inline void qsort()
{
for(re int i=0;i<=m;i++) tax[i]=0;
for(re int i=1;i<=n;i++) tax[rk[i]]++;
for(re int i=1;i<=m;i++) tax[i]+=tax[i-1];
for(re int i=n;i;--i) sa[tax[rk[tp[i]]]--]=tp[i];
}
int main()
{
scanf("%s",S+1);
n=strlen(S+1);
m=75;
for(re int i=1;i<=n;i++) rk[i]=S[i]-'a'+1,tp[i]=i;
qsort();
for(re int w=1,p=0;p<n;m=p,w<<=1)
{
p=0;
for(re int i=1;i<=w;i++) tp[++p]=n-w+i;
for(re int i=1;i<=n;i++) if(sa[i]>w) tp[++p]=sa[i]-w;
qsort();
for(re int i=1;i<=n;i++) std::swap(tp[i],rk[i]);
rk[sa[1]]=p=1;
for(re int i=2;i<=n;i++) rk[sa[i]]=(tp[sa[i-1]]==tp[sa[i]]&&tp[sa[i-1]+w]==tp[sa[i]+w])?p:++p;
}
int k=0;
for(re int i=1;i<=n;i++)
{
if(k) --k;
int j=sa[rk[i]-1];
while(S[i+k]==S[j+k]) ++k;
height[rk[i]]=k;
}
ans+=height[2];
a[1]=ans;cnt[1]=1,sum=ans;
top=1;
for(re int i=3;i<=n;i++)
{
int now=1;
while(top&&height[i]<=a[top])
now+=cnt[top],sum-=a[top]*cnt[top],top--;
cnt[++top]=now;
a[top]=height[i];
sum+=cnt[top]*a[top];
ans+=sum;
}
printf("%lld\n",(LL)(n-1)*(LL)(n+1)*(LL)n/2ll-2ll*ans);
return 0;
}

【[AHOI2013]差异】的更多相关文章

  1. BZOJ 3238: [Ahoi2013]差异 [后缀数组 单调栈]

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2326  Solved: 1054[Submit][Status ...

  2. bzoj 3238 Ahoi2013 差异

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2357  Solved: 1067[Submit][Status ...

  3. BZOJ 3238: [Ahoi2013]差异 [后缀自动机]

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 2512  Solved: 1140[Submit][Status ...

  4. BZOJ_3238_[Ahoi2013]差异_后缀自动机

    BZOJ_3238_[Ahoi2013]差异_后缀自动机 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao Sam ...

  5. BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈

    BZOJ_3238_[Ahoi2013]差异_后缀数组+单调栈 Description Input 一行,一个字符串S Output 一行,一个整数,表示所求值 Sample Input cacao ...

  6. 【LG4248】[AHOI2013]差异

    [LG4248][AHOI2013]差异 题面 洛谷 题解 后缀数组版做法戳我 我们将原串\(reverse\),根据后缀自动机的性质,两个后缀的\(lcp\)一定是我们在反串后两个前缀的\(lca\ ...

  7. 【BZOJ3238】[AHOI2013]差异

    [BZOJ3238][AHOI2013]差异 题面 给定字符串\(S\),令\(T_i\)表示以它从第\(i\)个字符开始的后缀.求 \[ \sum_{1\leq i<j\leq n}len(T ...

  8. P4248 [AHOI2013]差异 解题报告

    P4248 [AHOI2013]差异 题目描述 给定一个长度为 \(n\) 的字符串 \(S\),令 \(T_i\) 表示它从第 \(i\) 个字符开始的后缀.求 \[\displaystyle \s ...

  9. 【BZOJ 3238】 3238: [Ahoi2013]差异(SAM)

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 3047  Solved: 1375 Description In ...

  10. bzoj 3238: [Ahoi2013]差异 -- 后缀数组

    3238: [Ahoi2013]差异 Time Limit: 20 Sec  Memory Limit: 512 MB Description Input 一行,一个字符串S Output 一行,一个 ...

随机推荐

  1. SQL SERVER 快捷键收录

    1.大小写转换快捷键 Ctrl+Shift+U 转为大写 Ctrl+Shift+L 转为小写  

  2. 简单的SpringMVC经典案例

    主题:构建一个基于SpringMVC的HelloWord Web 项目 目的:快速体验什么是SpringMVC 方案: 1.创建工程,命名:SpringMVC 2.导包 3.在SRC下添加spring ...

  3. Activity正确获取View宽高

    在View的measure完成后,一般可以通过getMeasureWidth/getMeasureWidth方法可以正确的获取View的宽高,而在特殊情况下,可能需要多次measure才能确定最终的测 ...

  4. POJ2227(优先队列)

    The Wedding Juicer Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 3440   Accepted: 155 ...

  5. RBAC 介绍 (权限)

    RBAC是什么? RBAC是基于角色的访问控制(Role-Based Access Control )在RBAC中,权限与角色相关联,用户通过成为适当角色的成员而得到这些角色的权限.这就极大地简化了权 ...

  6. Unix环境高级编程:文件 IO 原子性 与 状态 共享

    参考 UnixUnix环境高级编程 第三章 文件IO 偏移共享 单进程单文件描述符 在只有一个进程时,打开一个文件,对该文件描述符进行写入操作后,后续的写入操作会在原来偏移的基础上进行,这样就可以实现 ...

  7. python 类之间的关系

    类与类之间的关系 在我们的世界中事物和事物之间总会有一些联系. 在面向对象中. 类和类之间也可以产生相关的关系 1. 依赖关系 执行某个动作的时候. 需要xxx来帮助你完成这个操作. 此时的关系是最轻 ...

  8. org.springframework.transaction.CannotCreateTransactionException Could not open

    org.springframework.transaction.CannotCreateTransactionException: Could not open JDBC Connection for ...

  9. angular.js 教程 -- 实例讲解

    angular.js AngularJS [1] 诞生于2009年,由Misko Hevery 等人创建,后为Google所收购.是一款优秀的前端JS框架,已经被用于Google的多款产品当中.Ang ...

  10. js常用正则收集

    1:非纯空白字符串且长度大于1:     /^\s*\S+[\s\S]*$/ 右侧可以正常匹配:“     11 1        1     a      ”  .“    1      aa” . ...