51Nod 1684 子集价值 (平方和去括号技巧)
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1684
题意:
新建一个位运算,求所有子集通过这个位运算后的答案的平方和是多少。
先想弱化版:
新建一个位运算,求所有子集通过这个位运算后的答案的和是多少。
枚举每一个二进制位,看有多少个子集能够使这一位为1
dp[i]表示前i个数中,能使枚举的这一位为1的方案数
根据第i个数选或者是不选转移
ans= Σ 2^j * 第j位的dp[n]
这里是平方和
设一个子集位运算后的结果为x,它对答案的贡献为x^2
把x按二进制拆为p位,即(x0+x1+x2+x_p-1)
其中xi表示2^i
那它对答案的贡献为 (x0+x1+x2+x_p-1)^ 2
去括号就是 x0*x0+x0*x1+……+x0*x_p-1+……+ x_p-1 * x0+x_p-1 * x1+…… x_p-1 * x_p-1
即 Σ Σ xi*xj i,j ∈[0,p)
每一项至于两位有关
所以枚举任意两位a,b
dp[i][0/1][0/1]表示前i个数,第a位为0/1,第b位为0/1的方案数
ans= Σ Σ 2^(i+j) * 枚举的两位为i和j时的dp[n][1][1]
即dp求的是表达式中每一项的系数
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std; #define N 50001 const int mod=1e9+; int n,p;
int to[][];
int b[N]; int dp[N][][]; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} int get(int p,int q)
{
memset(dp,,sizeof(dp));
bool pp,qq;
for(int i=;i<=n;++i)
{
pp=b[i]>>p&;
qq=b[i]>>q&;
dp[i][pp][qq]++;
dp[i][pp][qq]-=dp[i][pp][qq]>=mod ? mod : ;
for(int j=;j<;++j)
for(int k=;k<;++k)
{
dp[i][j][k]+=dp[i-][j][k];
dp[i][j][k]-=dp[i][j][k]>=mod ? mod : ;
dp[i][to[j][pp]][to[k][qq]]+=dp[i-][j][k];
dp[i][to[j][pp]][to[k][qq]]-=dp[i][to[j][pp]][to[k][qq]]>=mod ? mod : ;
}
}
return dp[n][][];
} int main()
{
read(n); read(p);
for(int i=;i<;++i)
for(int j=;j<;++j)
read(to[i][j]);
for(int i=;i<=n;++i) read(b[i]);
int ans=;
for(int i=;i<p;++i)
for(int j=;j<p;++j)
{
ans+=(1LL<<i+j)%mod*(long long)get(i,j)%mod;
ans-=ans>=mod ? mod : ;
}
cout<<ans;
}
lyk最近在研究位运算。
它发现除了xor,or,and外还有很多运算。
它新定义了一种运算符“#”。
具体地,可以由4个参数来表示。
ai,j表示
i#j。
其中i,j与a的值均∈[0,1]。
当然问题可以扩展为>1的情况,具体地,可以将两个数分解为p位,然后对于每一位执行上述的位运算,再将这个二进制串转化为十进制就可以了。
例如当 a0,0=a1,1=0,a0,1=a1,0=1时,3#4在p=3时等于7,2#3在p=4时等于1(实际上就是异或运算)。
现在lyk想知道的是,已知一个数列b。
它任意选取一个序列c,满足 c1<c2<...<ck,其中1≤c1且ck≤n ,这个序列的价值为 bc1 # bc2 #...# bck 的平方。
这里我们假设k是正整数,因此满足条件的c的序列一定是 2n−1 。lyk想知道所有满足条件的序列的价值总和是多少。
例如样例中,7个子集的价值分别为1,1,4,4,9,9,0。总和为28。
由于答案可能很大,只需对1,000,000,007取模即可。
第一行两个整数n(1<=n<=50000),p(1<=p<=30)。
第二行4个数表示a0,0,a0,1,a1,0,a1,1。(这4个数都∈{0,1})
第三行n个数bi(0<=bi<2^p)。
一行表示答案。
3 30
0 1 1 0
1 2 3
28
51Nod 1684 子集价值 (平方和去括号技巧)的更多相关文章
- 51nod 1684 子集价值
lyk最近在研究位运算. 它发现除了xor,or,and外还有很多运算. 它新定义了一种运算符“#”. 具体地,可以由4个参数来表示. ai,j表示 i#j. 其中i,j与a的值均∈[0,1]. 当然 ...
- [51nod1684]子集价值
lyk最近在研究位运算. 它发现除了xor,or,and外还有很多运算. 它新定义了一种运算符"#". 具体地,可以由4个参数来表示. ai,j表示 i#j. 其中i,j与a的值均 ...
- POJ1690 简单运算去括号
题目大意: 给定一串只含加减和括号的运算,去掉没用的括号和空白字符输出 这里其实只要去找当前括号前面那个运算符是不是减号,如果是减号且这个括号内出现过运算符说明这个括号应该存在 #include &l ...
- 51NOD 区间的价值 V2
http://www.51nod.com/contest/problem.html#!problemId=1674 因为题目要求的只是& 和 | 这两个运算.而这两个运算产生的值是有限的. & ...
- bat文件去括号
@Echo Off&SetLocal ENABLEDELAYEDEXPANSION FOR %%a in (*) do ( set "name=%%a" set " ...
- 【bzoj1561】[JSOI2009]去括号
#include<algorithm> #include<iostream> #include<cstdlib> #include<cstring> # ...
- SCI科技论文写作技巧-核心价值
第一次写SCI论文写作技巧,本身不是大牛,也许没有资金格谈论这个. 这里仅仅是一些个人思考,不正确,好还是不好.而当另一种理论. 对于工程专业的学生,谁往往应用,书写SCI事情.当然,也不是没可能.全 ...
- 傻瓜方法求集合的全部子集问题(java版)
给定随意长度的一个集合.用一个数组表示,如{"a", "b","c"},求它的全部子集.结果是{ {a}, {b}, {c}, {a,b}, ...
- Java实现带括号优先级的计算器
这个计算器不仅能够进行四则运算,还支持添加括号进行优先级计算,例如下面算式: 10+(2*16-20/5)+7*2=52 Java源代码: import java.awt.BorderLayout; ...
随机推荐
- 关于InfiniBand几个基本知识点解释
文章出处: https://blog.csdn.net/BtB5e6Nsu1g511Eg5XEg/article/details/83629279 公众号 https://blog.csdn.net/ ...
- Final发布 视频展示
1.视频链接 视频地址:http://v.youku.com/v_show/id_XMzk1OTYyNjE0NA==.html?spm=a2hzp.8244740.0.0 杨老师粉丝群——弹球学成语项 ...
- 11.12 Daily Scrum(保存草稿后忘了发布·····)
在实现过程中,我们发现要将不同人开发的组件整合起来并不是一件容易的事,于是我们调整了一下任务,修改了一下各自的程序: Today's tasks Tomorrow's tasks 丁辛 餐厅列表 ...
- 1.AKATSUKI
## 1.AKATSUKI - “晓”,日本漫画<火影忍者>及其衍生作品中的一个秘密组织. - 成立之初是为了给自己的国家带来和平. ## 2.团队成员 - 邱东宝 - 211606325 ...
- 《Linux内核设计与实现》 第三周 读书笔记
第一章 Linux内核简介 1. Unix的历史 Unⅸ虽然已经使用了40年,但计算机科学家仍然认为它是现存操作系统中最强大和最优秀的系统. Unix强大的根本原因: 简洁 在Unix中所有的东西都被 ...
- 20135337朱荟潼 Linux第二周学习总结——操作系统是如何工作的
一.计算机是如何工作的--总结 三个法宝 存储程序计算机.函数调用堆栈.中断机制 二.堆栈 1.是c语言程序运行时必须的一个记录调用路径和参数的空间. 函数调用框架.传递参数.保存返回地址.提供局部变 ...
- 运行Maven时报错:No goals have been specified for this build
No goals have been specified for this build. You must specify a valid lifecycle phase or a goal in t ...
- 设置macbook休眠模式
前言: macbook默认合上盖默认是进入混合休眠模式模式(mode 3),此时电脑还会供电.不想耗电的话关机的话当前的工作状态就丢失了. macbook实际上是可以进入休眠模式的,只是没开放出来,我 ...
- Docker(十一)-Docker commit创建镜像
创建镜像有很多方法,用户可以从 Docker Hub 获取已有镜像并更新,也可以利用本地文件系统创建一个. 修改已有的镜像 查看已有的镜像: $ sudo docker images REPOSITO ...
- javascript extend
interface Date{ addHours(h:number); addMinutes(m:number); format(str):string } interface String{ tri ...