http://www.lydsy.com/JudgeOnline/problem.php?id=3191

每个人获胜的概率只与其在排列中与庄家的相对位置有关

dp[i][j] 还剩i个人时,从庄家数第j个人获胜的概率

枚举这一次选哪张牌

那么出局的就是从庄家数第(a[k]-1)% i+1 个人

另其=t

那么出局后,新的庄家 就是这一局的第t+1 个人

那么第j个人就变成了新的一局的第 (j-t+i)%i 个人

所以,转移方程为

dp[i][j]= Σ dp[i-1][(j-t+i)%i] /m

#include<cstdio>

using namespace std;

#define N 51

int a[N];

double dp[N][N];

int main()
{
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=m;++i) scanf("%d",&a[i]);
dp[][]=;
int t;
for(int i=;i<=n;++i)
for(int j=;j<=i;++j)
for(int k=;k<=m;++k)
{
t=(a[k]-)%i+;
if(t==j) continue;
t=(j-t+i)%i;
dp[i][j]+=dp[i-][t]/m;
}
printf("%.2lf%%",dp[n][]*);
for(int i=;i<=n;++i) printf(" %.2lf%%",dp[n][i]*);
}

3191: [JLOI2013]卡牌游戏

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 672  Solved: 451
[Submit][Status][Discuss]

Description

 
N个人坐成一圈玩游戏。一开始我们把所有玩家按顺时针从1到N编号。首先第一回合是玩家1作为庄家。每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字为X,则庄家首先把卡片上的数字向所有玩家展示,然后按顺时针从庄家位置数第X个人将被处决即退出游戏。然后卡片将会被放回卡牌堆里并重新洗牌。被处决的人按顺时针的下一个人将会作为下一轮的庄家。那么经过N-1轮后最后只会剩下一个人,即为本次游戏的胜者。现在你预先知道了总共有M张卡片,也知道每张卡片上的数字。现在你需要确定每个玩家胜出的概率。
这里有一个简单的例子:
例如一共有4个玩家,有四张卡片分别写着3,4,5,6.
第一回合,庄家是玩家1,假设他选择了一张写着数字5的卡片。那么按顺时针数1,2,3,4,1,最后玩家1被踢出游戏。
第二回合,庄家就是玩家1的下一个人,即玩家2.假设玩家2这次选择了一张数字6,那么2,3,4,2,3,4,玩家4被踢出游戏。
第三回合,玩家2再一次成为庄家。如果这一次玩家2再次选了6,则玩家3被踢出游戏,最后的胜者就是玩家2.
 

Input

第一行包括两个整数N,M分别表示玩家个数和卡牌总数。
接下来一行是包含M个整数,分别给出每张卡片上写的数字。
 

Output

输出一行包含N个百分比形式给出的实数,四舍五入到两位小数。分别给出从玩家1到玩家N的胜出概率,每个概率之间用空格隔开,最后不要有空格。
 

Sample Input

5 5
2 3 5 7 11

Sample Output

22.72% 17.12% 15.36% 25.44% 19.36%

输入样例2:
4 4
3 4 5 6

HINT

对于100%的数据,有1<=N<=50 1<=M<=50 1<=每张卡片上的数字<=50

bzoj千题计划202:bzoj3191: [JLOI2013]卡牌游戏的更多相关文章

  1. [bzoj3191] [JLOI2013]卡牌游戏

    概率DP. 首先由题解可得>_<,胜出概率只与剩余人数.与庄家的相对位置有关. 所以设f[i][j]表示剩下i个人,从庄家开始第j个人的胜利概率... 根据卡牌一通乱搞即可... #inc ...

  2. [bzoj3191][JLOI2013][卡牌游戏] (概率dp)

    Description   N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字 ...

  3. bzoj千题计划310:bzoj5285: [Hnoi2018]寻宝游戏(思维题+哈希)

    https://www.lydsy.com/JudgeOnline/problem.php?id=5285 |0 和 &1 没有影响 若填‘|’,记为0,若填‘&’,记为1 先只考虑最 ...

  4. BZOJ_3191_[JLOI2013]卡牌游戏_概率DP

    BZOJ_3191_[JLOI2013]卡牌游戏_概率DP Description   N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随 ...

  5. [JLOI2013]卡牌游戏 概率DP

    [JLOI2013]卡牌游戏 概率DP 题面 \(dfs\)复杂度爆炸,考虑DP.发现决策时,我们只用关心当前玩家是从庄家数第几个玩家与当前抽到的牌是啥.于是设计状态\(f[i][j]\)表示有\(i ...

  6. 洛谷 P2059 [JLOI2013]卡牌游戏 解题报告

    P2059 [JLOI2013]卡牌游戏 题意 有\(n\)个人玩约瑟夫游戏,有\(m\)张卡,每张卡上有一个正整数,每次庄家有放回的抽一张卡,干掉从庄家起顺时针的第\(k\)个人(计算庄家),干掉的 ...

  7. bzoj千题计划300:bzoj4823: [Cqoi2017]老C的方块

    http://www.lydsy.com/JudgeOnline/problem.php?id=4823 讨厌的形状就是四联通图 且左右各连一个方块 那么破坏所有满足条件的四联通就好了 按上图方式染色 ...

  8. BZOJ3191或洛谷2059 [JLOI2013]卡牌游戏

    BZOJ原题链接 洛谷原题链接 我们可以倒着来\(DP\). 设\(f[i][j]\)表示剩余\(i\)个人,从庄家数起第\(j\)个人的胜率,设当前枚举到第\(k\)张牌,该情况下这一轮淘汰的位置为 ...

  9. bzoj 3191: [JLOI2013]卡牌游戏

    Description N个人坐成一圈玩游戏.一开始我们把所有玩家按顺时针从1到N编号.首先第一回合是玩家1作为庄家.每个回合庄家都会随机(即按相等的概率)从卡牌堆里选择一张卡片,假设卡片上的数字为X ...

随机推荐

  1. Jq_Js_Js、Jq获取浏览器和屏幕各种高度宽度

    $(document).ready(function()         {alert($(window).height()); //浏览器当前窗口可视区域高度alert($(document).he ...

  2. net面试宝典

    ASP.NET常见面试题及答案 1. 简述 private. protected. public. internal 修饰符的访问权限. 答 . private : 私有成员, 在类的内部才可以访问. ...

  3. (1) English Learning

    1.  no-brainer 不必花脑筋的事物 This tool is really no-brainer that almost everyone can use it. 这个工具太简单用了,不会 ...

  4. B1015 德才论 (25 分)

    19/25 #include<bits/stdc++.h> using namespace std; /* 1.de>=H && cai>=H 2.de> ...

  5. 2-Nineteenth Scrum Meeting-20151219

    任务安排 成员 今日完成 明日任务 闫昊 写完学习进度记录的数据库操作 请假(数据库) 唐彬 和服务器老师交流讨论区后台接口 请假(数据库) 史烨轩  尝试使用downloadmanager对noti ...

  6. Java实验报告(实验三)

    课程:Java程序设计          班级: 1351 姓名:王玮怡                学号:20135116 成绩:             指导教师:娄嘉鹏       实验日期: ...

  7. java实验报告五

    一.实验内容 1.掌握Socket程序的编写: 2.掌握密码技术的使用: 3.设计安全传输系统. 二.实验基础: IP和端口:IP是用来标示计算机,而端口是用来标示某个计算机上面的特定应用.至于它们的 ...

  8. 20172319 《Java程序设计教程》第7周学习总结

    20172319 2018.04.11-16 <Java程序设计教程>第7周学习总结 目录 教材学习内容总结 教材学习中的问题和解决过程 代码调试中的问题和解决过程 代码托管 上周考试错题 ...

  9. Xdebug原理

    前言: 前面一篇博文记录了Xdebug的安装配置.配置使用起来相对简单易懂,那么Xdebug的实现原理又是如何呢?所以就找了些资料来理解下其中的原理. 内容: Xdebug工作原理 1,IDE(如Ph ...

  10. Beta博客集合

    Beta博客集合 Task1:beta冲刺准备 冲刺准备 Task2:Beta阶段冲刺合集 Beta阶段冲刺一 Beta阶段冲刺二 Beta阶段冲刺三 Beta阶段冲刺四 Beta阶段冲刺五 Task ...